scholarly journals Design of a Fuzzy Optimization Control Structure for Nonlinear Systems: A Disturbance-Rejection Method

2021 ◽  
Vol 11 (6) ◽  
pp. 2612
Author(s):  
Samia Charfeddine ◽  
Attia Boudjemline ◽  
Sondess Ben Aoun ◽  
Houssem Jerbi ◽  
Mourad Kchaou ◽  
...  

This paper tackles the control problem of nonlinear disturbed polynomial systems using the formalism of output feedback linearization and a subsequent sliding mode control design. This aims to ensure the asymptotic stability of an unstable equilibrium point. The class of systems under investigation has an equivalent Byrnes–Isidori normal form, which reveals stable zero dynamics. For the case of modeling uncertainties and/or process dynamic disturbances, conventional feedback linearizing control strategies may fail to be efficient. To design a robust control strategy, meta-heuristic techniques are synthesized with feedback linearization and sliding mode control. The resulting control design guarantees the decoupling of the system output from disturbances and achieves the desired output trajectory tracking with asymptotically stable dynamic behavior. The effectiveness and efficiency of the designed technique were assessed based on a benchmark model of a continuous stirred tank reactor (CSTR) through numerical simulation analysis.

2011 ◽  
Vol 7 (1) ◽  
pp. 19-24
Author(s):  
Aamir Hashim Obeid Ahmed ◽  
Martino O. Ajangnay ◽  
Shamboul A. Mohamed ◽  
Matthew W. Dunnigan

2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Zeyu Shi ◽  
Yingpin Wang ◽  
Yunxiang Xie ◽  
Lanfang Li ◽  
Xiaogang Xu

Active power filter (APF) is the most popular device in regulating power quality issues. Currently, most literatures ignored the impact of grid impedance and assumed the load voltage is ideal, which had not described the system accurately. In addition, the controllers applied PI control; thus it is hard to improve the compensation quality. This paper establishes a precise model which consists of APF, load, and grid impedance. The Bode diagram of traditional simplified model is obviously different with complete model, which means the descriptions of the system based on the traditional simplified model are inaccurate and incomplete. And then design exact feedback linearization and quasi-sliding mode control (FBL-QSMC) is based on precise model in inner current loop. The system performances in different parameters are analyzed and dynamic performance of proposed algorithm is compared with traditional PI control algorithm. At last, simulations are taken in three cases to verify the performance of proposed control algorithm. The results proved that the proposed feedback linearization and quasi-sliding mode control algorithm has fast response and robustness; the compensation performance is superior to PI control obviously, which also means the complete modeling and proposed control algorithm are correct.


Sign in / Sign up

Export Citation Format

Share Document