scholarly journals Distributed Attitude Synchronization for Spacecraft Formation Flying via Event-Triggered Control

2021 ◽  
Vol 11 (14) ◽  
pp. 6299
Author(s):  
Xiong Xie ◽  
Tao Sheng ◽  
Liang He

The distributed attitude synchronization control problem for spacecraft formation flying subject to limited energy and computational resources is addressed based on event-triggered mechanism. Firstly, a distributed event-driven controller is designed to achieve attitude coordination with the limitation of energy and computing resources. Under the proposed control strategy, the controller is only updated at the event triggering instants, which effectively reduces the update frequency. Subsequently, an event-triggered strategy is developed to further decrease energy consumption and the amount of computation. The proposed event-triggered function only requires the latest state information about its neighbors, implying that the trigger threshold does not need to be calculated continuously. It is shown that the triggering interval between two successive events is strictly positive, showing that the control system has no Zeno phenomenon. Moreover, the update frequency of the proposed controller can be reduced by more than 90% compared to the update frequency of the corresponding time-driven controller with an update frequency of 10 Hz by choosing appropriate control parameters and the control system can still achieve high-precision convergence. Finally, the effectiveness of the constructed control scheme is verified by numerical simulations.

2018 ◽  
Vol 41 (4) ◽  
pp. 889-899 ◽  
Author(s):  
Ruixia Liu ◽  
Ming Liu ◽  
Yuan Liu

In this paper, the nonlinear optimal control problem is investigated for spacecraft formation flying with collision avoidance. Based on a nonlinear model of formation flying, two optimal tracking control laws are proposed to ensure the formation pattern converges to the predetermined configuration. The first optimal control law which combines Lyapunov optimizing control with a trajectory-following optimization technique is developed to solve the finite-time nonlinear optimal control problem. For the second controller, an extended [Formula: see text]-[Formula: see text] method is applied to design a closed-form feedback control scheme for nonlinear control problem of spacecraft formation flying with non-standard cost functions. By taking into account the flying safety, a repulsive control scheme is incorporated in the optimal controller to ensure collision avoidance and minimize the performance index. Finally, a numerical example is performed to demonstrate the effectiveness of the proposed approaches.


Sign in / Sign up

Export Citation Format

Share Document