scholarly journals Effect of Magnetic Nanofluids on the Performance of a Fin-Tube Heat Exchanger

2021 ◽  
Vol 11 (19) ◽  
pp. 9261
Author(s):  
Yun-Seok Choi ◽  
Youn-Jea Kim

As electrical devices become smaller, it is essential to maintain operating temperature for safety and durability. Therefore, there are efforts to improve heat transfer performance under various conditions, such as using extended surfaces and nanofluids. Among them, cooling methods using ferrofluid are drawing the attention of many researchers. This fluid can control the movement of the fluid in magnetic fields. In this study, the heat transfer performance of a fin-tube heat exchanger, using ferrofluid as a coolant, was analyzed when external magnetic fields were applied. Permanent magnets were placed outside the heat exchanger. When the magnetic fields were applied, a change in the thermal boundary layer was observed. It also formed vortexes, which affected the formation of flow patterns. The vortex causes energy exchanges in the flow field, activating thermal diffusion and improving heat transfer. A numerical analysis was used to observe the cooling performance of heat exchangers, as the strength and number of the external magnetic fields were varying. VGs (vortex generators) were also installed to create vortex fields. A convective heat transfer coefficient was calculated to determine the heat transfer rate. In addition, the comparative analysis was performed with graphical results using contours of temperature and velocity.

Author(s):  
Sun-Joon Byun ◽  
Sang-Jae Lee ◽  
Jae-Min Cha ◽  
Zhen-Huan Wang ◽  
Young-Chul Kwon

This study presents the comparison of heat transfer capacity and pressure drop characteristics between a basic fin-tube heat exchanger and a modified heat exchanger with the structural change of branch tubes and coiled turbulators. All experiments were carried out using an air-enthalpy type calorimeter based on the method described in ASHRAE standards, under heat exchanger experimental conditions. 14 different kinds of heat exchangers were used for the experiment. Cooling and heating capacities of the turbulator heat exchanger were excellent, compared to the basic one. As the insertion ratio of the coiled turbulator and the number of row increased, the heat transfer performance increased. However, the capacity per unit area was more effective in 4 rows than 6 rows, and the cooling performance of the 6 row turbulator heat exchanger (100% turbulator insert ratio) was down to about 6% than that of 4 row one. As the water flow rate and the turbulator insertion ratio increased, the pressure drop of the water side increased. This trend was more pronounced in 6 rows. In the cooling condition, the pressure drop on the air side was slightly increased due to the generation of condensed water, but was insignificant under the heating condition. The power consumption of the pump was more affected by the water flow rate than the coiled turbulator. The equivalent hydraulic diameter of a tube by the turbulator was reduced and then the heat transfer performance was improved. Thus, the tube diameter was smaller, the heat flux was better.


2014 ◽  
Vol 2014 (0) ◽  
pp. _E123-1_-_E123-2_
Author(s):  
Yuya Arakawa ◽  
Taketo Uchino ◽  
Taro Nakanishi ◽  
Ryutaro Shinohara

2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3601-3612
Author(s):  
Dan Zheng ◽  
Jin Wang ◽  
Yu Pang ◽  
Zhanxiu Chen ◽  
Bengt Sunden

Experimental research was conducted to reveal the effects of nanofluids on heat transfer performance in a double-tube heat exchanger. With nanoparticle weight fraction of 0.5-2.0% and Reynolds number of 4500-14500, the flow resistance and heat transfer were analyzed by using six nanofluids, i.e., CuO-water, Al2O3-water, Fe3O4-water, ZnO-water, SiC-water, SiO2-water nanofluids. Results show that SiC-water nanofluid with a weight concentration of 1.5% provides the best improvement of heat transfer performance. 1.0% CuO-water and 0.5% SiO2-water nanofluids have lower friction factors in the range of Reynolds number from 4500-14500 compared to the other nanofluids. Based on test results of heat transfer performance and flow resistance, the 1.0% CuO-water nanofluid shows a great advantage due to a relatively high heat transfer performance and a low friction factor. Finally, empirical formulae of Nusselt numbers for various nanofluids were established based on experimental data tested in the double-tube heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document