scholarly journals High-Capacity and High-Quality Reversible Data Hiding Method Using Recurrent Round-Trip Embedding Strategy in the Quotient Image

2021 ◽  
Vol 11 (21) ◽  
pp. 10157
Author(s):  
Chin-Feng Lee ◽  
Hua-Zhe Wu

In previous research, scholars always think about how to improve the information hiding algorithm and strive to have the largest embedding capacity and better image quality, restoring the original image. This research mainly proposes a new robust and reversible information hiding method, recurrent robust reversible data hiding (triple-RDH), with a recurrent round-trip embedding strategy. We embed the secret message in a quotient image to increase the image robustness. The pixel value is split into two parts, HiSB and LoSB. A recurrent round-trip embedding strategy (referred to as double R-TES) is designed to adjust the predictor and the recursive parameter values, so the pixel value carrying the secret data bits can be first shifted to the right and then shifted to the left, resulting in pixel invariance, so the embedding capacity can be effectively increased repeatedly. Experimental results show that the proposed triple-RDH method can effectively increase the embedding capacity up to 310,732 bits and maintain a certain level of image quality. Compared with the existing pixel error expansion (PEE) methods, the triple-RDH method not only has a high capacity but also has robustness for image processing against unintentional attacks. It can also be used for capacity and image quality according to the needs of the application, performing adjustable embedding.

Author(s):  
Ari Moesriami Barmawi ◽  
Deden Pradeka

Recently, information exchange using internet is increasing, such that information security is necessary for securing confidential information because it is possible to eavesdrop the information. There are several methods for securing the exchanged information such as was proposed by Rejani et al. Rejani’s method can be noiseless in low capacity but noisy in high capacity. In the case of high capacity, it will raise suspicion. This research proposed a method based on histogram and pixel pattern for keeping the stego image noiseless while still keeping the capacity high. Secret information can be embedded into the cover by evaluating the histogram and map the characters used in the secret message to the consecutive intensity in the cover image histogram. The map of the characters is sent to the recipient securely. Using the proposed method there is no pixel value changes during the embedding process. Based on the result of the experiments, it is shown that in noiseless condition, the proposed method has higher embedding capacity than Rejani’s especially when using cover image with sizes larger than 128 × 128. Thus, in noiseless condition the embedding capacity using the proposed method is higher than Rejani’s method in noiseless condition.  


2020 ◽  
Vol 36 (2) ◽  
pp. 139-158
Author(s):  
Nguyen Kim Sao ◽  
Nguyen Ngoc Hoa ◽  
Pham Van At

This paper presents a new effective reversible data hiding method based on pixel-value-ordering (iGePVO-K) which is improvement of a recent GePVO-K method that recently is considered as a PVO-used method having highest embedding capacity. In comparison with GePVO-K method, iGePVO-K has the following advantages. First, the embedding capacity of the new method is higher than that of GePVO-K method by using data embedding formulas reasonably and reducing the location map size. Second, for embedding data, in the new method, each pixel value is modified at most by one, while in GePVO-K method, each pixel value may be modified by two. In fact, in the GePVO-K method, the largest pixels are modified by two for embedding bits 1 and by one for bits 0. This is also true for the smallest pixels. Meanwhile, in the proposed method, the largest pixels are modified by one for embedding bits 1 and are unchanged if embedding bits 0. Therefore, the stego-image quality in proposed method is better than that in GePVO-K method. Theoretical analysis and experiment results show that the proposed method has higher embedding capacity and better stego image quality than GePVO-K method.


2018 ◽  
Vol 27 (11) ◽  
pp. 1850175 ◽  
Author(s):  
Neeraj Kumar Jain ◽  
Singara Singh Kasana

The proposed reversible data hiding technique is the extension of Peng et al.’s technique [F. Peng, X. Li and B. Yang, Improved PVO-based reversible data hiding, Digit. Signal Process. 25 (2014) 255–265]. In this technique, a cover image is segmented into nonoverlapping blocks of equal size. Each block is sorted in ascending order and then differences are calculated on the basis of locations of its largest and second largest pixel values. Negative predicted differences are utilized to create empty spaces which further enhance the embedding capacity of the proposed technique. Also, the already sorted blocks are used to enhance the visual quality of marked images as pixels of these blocks are more correlated than the unsorted pixels of the block. Experimental results show the effectiveness of the proposed technique.


2021 ◽  
Vol 11 (15) ◽  
pp. 6741
Author(s):  
Chia-Chen Lin ◽  
Thai-Son Nguyen ◽  
Chin-Chen Chang ◽  
Wen-Chi Chang

Reversible data hiding has attracted significant attention from researchers because it can extract an embedded secret message correctly and recover a cover image without distortion. In this paper, a novel, efficient reversible data hiding scheme is proposed for absolute moment block truncation code (AMBTC) compressed images. The proposed scheme is based on the high correlation of neighboring values in two mean tables of AMBTC-compressed images to further losslessly encode these values and create free space for containing a secret message. Experimental results demonstrated that the proposed scheme obtained a high embedding capacity and guaranteed the same PSNRs as the traditional AMBTC algorithm. In addition, the proposed scheme achieved a higher embedding capacity and higher efficiency rate than those of some previous schemes while maintaining an acceptable bit rate.


2014 ◽  
Vol 6 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Shun Zhang ◽  
Tie-gang Gao ◽  
Fu-sheng Yang

A reversible data hiding scheme based on integer DWT and histogram modification is proposed. In the scheme, the cover media is firstly transformed by Integer DWT (Discrete Wavelet Transformation); then information is embedded through the modification of histograms of the middle and high frequency sub-bands of the DWT coefficients. In order to increase the embedding capacity, a multi-level scheme is proposed, which achieved both high embedding capacity and reversibility. Extensive experimental results have shown that the proposed scheme achieves both higher embedding capacity and lower distortion than spatial domain histogram modification based schemes; and it achieved better performance than integer DCT (Discrete Cosine Transformation) based histogram modification scheme.


2021 ◽  
Vol 13 (6) ◽  
pp. 1-14
Author(s):  
Lianshan Liu ◽  
Xiaoli Wang ◽  
Lingzhuang Meng ◽  
Gang Tian ◽  
Ting Wang

On the premise of guaranteeing the visual effect, in order to improve the security of the image containing digital watermarking and restore the carrier image without distortion, reversible data hiding in chaotic encryption domain based on odevity verification was proposed. The original image was scrambled and encrypted by Henon mapping, and the redundancy between the pixels of the encrypted image was lost. Then, the embedding capacity of watermarking can be improved by using odevity verification, and the embedding location of watermarking can be randomly selected by using logistic mapping. When extracting the watermarking, the embedded data was judged according to the odevity of the pixel value of the embedding position of the watermarking, and the carrier image was restored nondestructively by odevity check image. The experimental results show that the peak signal-to-noise ratio (PSNR) of the original image is above 53 decibels after the image is decrypted and restored after embedding the watermarking in the encrypted domain, and the invisibility is good.


2020 ◽  
Vol 39 (3) ◽  
pp. 2977-2990
Author(s):  
R. Anushiadevi ◽  
Padmapriya Praveenkumar ◽  
John Bosco Balaguru Rayappan ◽  
Rengarajan Amirtharajan

Digital image steganography algorithms usually suffer from a lossy restoration of the cover content after extraction of a secret message. When a cover object and confidential information are both utilised, the reversible property of the cover is inevitable. With this objective, several reversible data hiding (RDH) algorithms are available in the literature. Conversely, because both are diametrically related parameters, existing RDH algorithms focus on either a good embedding capacity (EC) or better stego-image quality. In this paper, a pixel expansion reversible data hiding (PE-RDH) method with a high EC and good stego-image quality are proposed. The proposed PE-RDH method was based on three typical RDH schemes, namely difference expansion, histogram shifting, and pixel value ordering. The PE-RDH method has an average EC of 0.75 bpp, with an average peak signal-to-noise ratio (PSNR) of 30.89 dB. It offers 100% recovery of the original image and confidential hidden messages. To protect secret as well as cover the proposed PE-RDH is also implemented on the encrypted image by using homomorphic encryption. The strength of the proposed method on the encrypted image was verified based on a comparison with several existing methods, and the approach achieved better results than these methods in terms of its EC, location map size and imperceptibility of directly decrypted images.


2019 ◽  
Vol 16 (4) ◽  
pp. 835-855 ◽  
Author(s):  
Chin-Feng Lee ◽  
Jau-Ji Shen ◽  
Yu-Chi Kao ◽  
Somya Agrawal

Sign in / Sign up

Export Citation Format

Share Document