scholarly journals Information Hiding Based on Histogram and Pixel Pattern

Author(s):  
Ari Moesriami Barmawi ◽  
Deden Pradeka

Recently, information exchange using internet is increasing, such that information security is necessary for securing confidential information because it is possible to eavesdrop the information. There are several methods for securing the exchanged information such as was proposed by Rejani et al. Rejani’s method can be noiseless in low capacity but noisy in high capacity. In the case of high capacity, it will raise suspicion. This research proposed a method based on histogram and pixel pattern for keeping the stego image noiseless while still keeping the capacity high. Secret information can be embedded into the cover by evaluating the histogram and map the characters used in the secret message to the consecutive intensity in the cover image histogram. The map of the characters is sent to the recipient securely. Using the proposed method there is no pixel value changes during the embedding process. Based on the result of the experiments, it is shown that in noiseless condition, the proposed method has higher embedding capacity than Rejani’s especially when using cover image with sizes larger than 128 × 128. Thus, in noiseless condition the embedding capacity using the proposed method is higher than Rejani’s method in noiseless condition.  

2021 ◽  
Vol 11 (21) ◽  
pp. 10157
Author(s):  
Chin-Feng Lee ◽  
Hua-Zhe Wu

In previous research, scholars always think about how to improve the information hiding algorithm and strive to have the largest embedding capacity and better image quality, restoring the original image. This research mainly proposes a new robust and reversible information hiding method, recurrent robust reversible data hiding (triple-RDH), with a recurrent round-trip embedding strategy. We embed the secret message in a quotient image to increase the image robustness. The pixel value is split into two parts, HiSB and LoSB. A recurrent round-trip embedding strategy (referred to as double R-TES) is designed to adjust the predictor and the recursive parameter values, so the pixel value carrying the secret data bits can be first shifted to the right and then shifted to the left, resulting in pixel invariance, so the embedding capacity can be effectively increased repeatedly. Experimental results show that the proposed triple-RDH method can effectively increase the embedding capacity up to 310,732 bits and maintain a certain level of image quality. Compared with the existing pixel error expansion (PEE) methods, the triple-RDH method not only has a high capacity but also has robustness for image processing against unintentional attacks. It can also be used for capacity and image quality according to the needs of the application, performing adjustable embedding.


2017 ◽  
Vol 4 (4) ◽  
pp. 161066 ◽  
Author(s):  
Shiv Prasad ◽  
Arup Kumar Pal

This paper presents a steganographic scheme based on the RGB colour cover image. The secret message bits are embedded into each colour pixel sequentially by the pixel-value differencing (PVD) technique. PVD basically works on two consecutive non-overlapping components; as a result, the straightforward conventional PVD technique is not applicable to embed the secret message bits into a colour pixel, since a colour pixel consists of three colour components, i.e. red, green and blue. Hence, in the proposed scheme, initially the three colour components are represented into two overlapping blocks like the combination of red and green colour components, while another one is the combination of green and blue colour components, respectively. Later, the PVD technique is employed on each block independently to embed the secret data. The two overlapping blocks are readjusted to attain the modified three colour components. The notion of overlapping blocks has improved the embedding capacity of the cover image. The scheme has been tested on a set of colour images and satisfactory results have been achieved in terms of embedding capacity and upholding the acceptable visual quality of the stego-image.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xinliang Bi ◽  
Xiaoyuan Yang ◽  
Chao Wang ◽  
Jia Liu

Steganography is a technique for publicly transmitting secret information through a cover. Most of the existing steganography algorithms are based on modifying the cover image, generating a stego image that is very similar to the cover image but has different pixel values, or establishing a mapping relationship between the stego image and the secret message. Attackers will discover the existence of secret communications from these modifications or differences. In order to solve this problem, we propose a steganography algorithm ISTNet based on image style transfer, which can convert a cover image into another stego image with a completely different style. We have improved the decoder so that the secret image features can be fused with style features in a variety of sizes to improve the accuracy of secret image extraction. The algorithm has the functions of image steganography and image style transfer at the same time, and the images it generates are both stego images and stylized images. Attackers will pay more attention to the style transfer side of the algorithm, but it is difficult to find the steganography side. Experiments show that our algorithm effectively increases the steganography capacity from 0.06 bpp to 8 bpp, and the generated stylized images are not significantly different from the stylized images on the Internet.


2020 ◽  
Vol 9 (1) ◽  
pp. 2042-2045

Nowadays, the information security has been the key factor in communications, computer systems, electronic commerce and data sharing. One of the well-known methods for procuring the security of shared information using carrier files is steganography. The carrier file can be discrete such as image, text, audio and video etc. Digital images are the most commonly used format among those due to the high capacity and availability frequency. The hidden data is stored in an indistinct carrier in image steganography, i.e the digital image is used as a cover image to mask the secret message known as stego image. Cryptography can be then adapted for increasing the security of the stego image. A zig-zag MSB-LSB slicing based steganographic algorithm is proposed in this paper for concealing a secret image in a cover image. Power report and device utilization summary of the algorithm is calculated and the output is demonstrated on the VGA screen using BASYS3 Field Programmable Gate Array (FPGA).


2018 ◽  
Vol 27 (11) ◽  
pp. 1850175 ◽  
Author(s):  
Neeraj Kumar Jain ◽  
Singara Singh Kasana

The proposed reversible data hiding technique is the extension of Peng et al.’s technique [F. Peng, X. Li and B. Yang, Improved PVO-based reversible data hiding, Digit. Signal Process. 25 (2014) 255–265]. In this technique, a cover image is segmented into nonoverlapping blocks of equal size. Each block is sorted in ascending order and then differences are calculated on the basis of locations of its largest and second largest pixel values. Negative predicted differences are utilized to create empty spaces which further enhance the embedding capacity of the proposed technique. Also, the already sorted blocks are used to enhance the visual quality of marked images as pixels of these blocks are more correlated than the unsorted pixels of the block. Experimental results show the effectiveness of the proposed technique.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 111
Author(s):  
Mingliang Zhang ◽  
Zhenyu Li ◽  
Pei Zhang ◽  
Yi Zhang ◽  
Xiangyang Luo

Behavioral steganography is a method used to achieve covert communication based on the sender’s behaviors. It has attracted a great deal of attention due to its robustness and wide application scenarios. Current behavioral steganographic methods are still difficult to apply in practice because of their limited embedding capacity. To this end, this paper proposes a novel high-capacity behavioral steganographic method combining timestamp modulation and carrier selection based on social networks. It is a steganographic method where the embedding process and the extraction process are symmetric. When sending a secret message, the method first maps the secret message to a set of high-frequency keywords and divides them into keyword subsets. Then, the posts containing the keyword subsets are retrieved on social networks. Next, the positions of the keywords in the posts are modulated as the timestamps. Finally, the stego behaviors applied to the retrieved posts are generated. This method does not modify the content of the carrier, which ensures the naturalness of the posts. Compared with typical behavioral steganographic methods, the embedding capacity of the proposed method is 29.23∼51.47 times higher than that of others. Compared to generative text steganography, the embedding capacity is improved by 16.26∼23.94%.


The growth rate of the Internet is exceeding that of any previous technology. As the Internet has become the major medium for transferring sensitive information, the security of the transferred message has now become the utmost priority. To ensure the security of the transmitted data, Image steganography has emerged out as an eminent tool of information hiding. The frequency of availability of image file is high and provides high capacity. In this paper, a method of secure data hiding in image is proposed that uses knight tour positions and further 8-queen positions in 8*8 pixel blocks.The cover image is divided into 8*8 pixel blocks and pixels are selected from each block corresponding to the positions of Knight in 8*8 chessboard starting from different pixel positions. 8-pixel values are selected from alternate knight position. Selected pixels values converted to 8-bit ASCII code and result in 8* 8 bit matrix. 8-Queen’s solution on 8*8 chessboard is applied on 8*8 bit matrix. The bits selected from 8-Queens positions and compared with 8-bit ASCII code of message characters. The proposed algorithm changes the LSB of only some of the pixels based on the above comparison. Based on parameters like PSNR and MSE the efficiency of the method is checked after implementation. Then the comparison done with some already proposed techniques. This is how, image steganography showed interesting and promising results when compared with other techniques.


Author(s):  
Wisam Abed Shukur ◽  
Khalid Kadhim Jabbar

<p>Generally, The sending process of secret information via the transmission channel or any carrier medium is not secured. For this reason, the techniques of information hiding are needed. Therefore, steganography must take place before transmission. To embed a secret message at optimal positions of the cover image under spatial domain, using the developed particle swarm optimization algorithm (Dev.-PSO) to do that purpose in this paper based on Least Significant Bits (LSB) using LSB substitution. The main aim of (Dev. -PSO) algorithm is determining an optimal paths to reach a required goals in the specified search space based on disposal of them, using (Dev.-PSO) algorithm produces the paths of a required goals with most efficient and speed. An agents population is used in determining process of a required goals at search space for solving of problem. The (Dev.-PSO) algorithm is applied to different images; the number of an image which used in the experiments in this paper is three. For all used images, the Peak Signal to Noise Ratio (PSNR) value is computed. Finally, the PSNR value of the stego-A that obtained from blue sub-band colo is equal (44.87) dB, while the stego-B is equal (44.45) dB, and the PSNR value for the stego-C is (43.97)dB, while the vlue of MSE that obtained from the same color sub-bans is (0.00989), stego-B equal to (0.01869), and stego-C is (0.02041). Furthermore, our proposed method has ability to survive the quality for the stego image befor and after hiding stage or under intended attack that used in the existing paper such as Gaussian noise, and salt &amp; pepper noise.</p>


Author(s):  
Oluwaseun M. Alade ◽  
Elizabeth A. Amusan ◽  
Oluyinka T. Adedeji ◽  
Oluwaseun O. Alo

Steganography deals with the ways of hiding communicated data in such a way that it remains confidential. Finding best position inside cover image to embed text message, maintaining a reasonable trade-off between security, robustness, higher bit embedding rate and imperceptibility are some of the challenges of steganography system. Hence, this paper presents firefly algorithm for finding best positions inside cover image in order to embed text message into cover image using Pixel Value Differencing (PVD) technique. Four different cover image was used. Experimental result showed the cover image with selected location using firefly algorithm as well as the stego image using PVD technique. The stego image was evaluated using Peak Signal to Noise Ratio (PSNR) and Mean square Error (MSE).  Firefly Algorithm with PVD technique produced a promising result for image steganography.


Author(s):  
Hui Tian ◽  
Jie Qin ◽  
Yongfeng Huang ◽  
Xu An Wang ◽  
Jin Liu ◽  
...  

Although steganographic transparency and embedding capacity are considered to be two conflicting objectives in the design of steganographic systems, it is possible and necessary to strike a good balance between them in Voice-over-IP steganography. In this paper, to improve steganographic transparency while maintaining relatively large embedding capacity, the authors present a (2n-1, 2n) covering code, which can hide 2n-1 bits of secret messages into 2n bits of cover messages with not more than n-bit changed. Specifically, each (2n-1)-bit secret message is first transformed into two 2n-bit candidate codewords. In embedding process, the cover message is replaced with the optimal codeword more similar with it. In this way, the embedding distortion can be largely reduced. The proposed method is evaluated by comparing with existing ones with a large number of ITU-T G.729a encoded speech samples. The experimental results show that the authors' scheme can provide good performance on both steganographic transparency and embedding capacity, and achieve better balance between the two objectives than the existing ones.


Sign in / Sign up

Export Citation Format

Share Document