scholarly journals Deep Reinforcement Learning Algorithms for Path Planning Domain in Grid-like Environment

2021 ◽  
Vol 11 (23) ◽  
pp. 11335
Author(s):  
Maciej Grzelczak ◽  
Piotr Duch

Recently, more and more solutions have utilised artificial intelligence approaches in order to enhance or optimise processes to achieve greater sustainability. One of the most pressing issues is the emissions caused by cars; in this paper, the problem of optimising the route of delivery cars is tackled. In this paper, the applicability of the deep reinforcement learning algorithms with regards to the aforementioned problem is tested on a simulation game designed and implemented to pose various challenges such as constant change of delivery locations. The algorithms chosen for this task are Advantage Actor-Critic (A2C) with and without Proximal Policy Optimisation (PPO). These novel and advanced reinforcement learning algorithms have yet not been utilised in similar scenarios. The differences in performance and learning process of those are visualised and discussed. It is demonstrated that both of those algorithms present a slow but steady learning curve, which is an expected effect of reinforcement learning algorithms, leading to a conclusion that the algorithms would discover an optimal policy with an adequately long learning process. Additionally, the benefits of the Proximal Policy Optimisation algorithm are proven by the enhanced learning curve with comparison to the Advantage Actor-Critic approach, as the learning process is characterised by faster growth with a significantly smaller variation. Finally, the applicability of such algorithms in the described scenarios is discussed, alongside the possible improvements and future work.

Author(s):  
Xiaoming Liu ◽  
Zhixiong Xu ◽  
Lei Cao ◽  
Xiliang Chen ◽  
Kai Kang

The balance between exploration and exploitation has always been a core challenge in reinforcement learning. This paper proposes “past-success exploration strategy combined with Softmax action selection”(PSE-Softmax) as an adaptive control method for taking advantage of the characteristics of the online learning process of the agent to adapt exploration parameters dynamically. The proposed strategy is tested on OpenAI Gym with discrete and continuous control tasks, and the experimental results show that PSE-Softmax strategy delivers better performance than deep reinforcement learning algorithms with basic exploration strategies.


Author(s):  
Eduardo F. Morales ◽  
Julio H. Zaragoza

This chapter introduces an approach for reinforcement learning based on a relational representation that: (i) can be applied over large search spaces, (ii) can incorporate domain knowledge, and (iii) can use previously learned policies on different, but similar, problems. The underlying idea is to represent states as sets of first order relations, actions in terms of those relations, and to learn policies over such generalized representation. It is shown how this representation can produce powerful abstractions and that policies learned over this generalized representation can be directly applied, without any further learning, to other problems that can be characterized by the same set of relations. To accelerate the learning process, we present an extension where traces of the tasks to be learned are provided by the user. These traces are used to select only a small subset of possible actions increasing the convergence of the learning algorithms. The effectiveness of the approach is tested on a flight simulator and on a mobile robot.


Robotics ◽  
2013 ◽  
pp. 248-273
Author(s):  
Eduardo F. Morales ◽  
Julio H. Zaragoza

This chapter introduces an approach for reinforcement learning based on a relational representation that: (i) can be applied over large search spaces, (ii) can incorporate domain knowledge, and (iii) can use previously learned policies on different, but similar, problems. The underlying idea is to represent states as sets of first order relations, actions in terms of those relations, and to learn policies over such generalized representation. It is shown how this representation can produce powerful abstractions and that policies learned over this generalized representation can be directly applied, without any further learning, to other problems that can be characterized by the same set of relations. To accelerate the learning process, we present an extension where traces of the tasks to be learned are provided by the user. These traces are used to select only a small subset of possible actions increasing the convergence of the learning algorithms. The effectiveness of the approach is tested on a flight simulator and on a mobile robot.


2021 ◽  
Vol 11 (11) ◽  
pp. 4948
Author(s):  
Lorenzo Canese ◽  
Gian Carlo Cardarilli ◽  
Luca Di Di Nunzio ◽  
Rocco Fazzolari ◽  
Daniele Giardino ◽  
...  

In this review, we present an analysis of the most used multi-agent reinforcement learning algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the most critical issues that must be taken into account in their extension to multi-agent scenarios. The analyzed algorithms were grouped according to their features. We present a detailed taxonomy of the main multi-agent approaches proposed in the literature, focusing on their related mathematical models. For each algorithm, we describe the possible application fields, while pointing out its pros and cons. The described multi-agent algorithms are compared in terms of the most important characteristics for multi-agent reinforcement learning applications—namely, nonstationarity, scalability, and observability. We also describe the most common benchmark environments used to evaluate the performances of the considered methods.


2021 ◽  
Vol 298 ◽  
pp. 117164
Author(s):  
Marco Biemann ◽  
Fabian Scheller ◽  
Xiufeng Liu ◽  
Lizhen Huang

Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 226
Author(s):  
Wenzel Pilar von Pilchau ◽  
Anthony Stein ◽  
Jörg Hähner

State-of-the-art Deep Reinforcement Learning Algorithms such as DQN and DDPG use the concept of a replay buffer called Experience Replay. The default usage contains only the experiences that have been gathered over the runtime. We propose a method called Interpolated Experience Replay that uses stored (real) transitions to create synthetic ones to assist the learner. In this first approach to this field, we limit ourselves to discrete and non-deterministic environments and use a simple equally weighted average of the reward in combination with observed follow-up states. We could demonstrate a significantly improved overall mean average in comparison to a DQN network with vanilla Experience Replay on the discrete and non-deterministic FrozenLake8x8-v0 environment.


Sign in / Sign up

Export Citation Format

Share Document