hvac control
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 73)

H-INDEX

22
(FIVE YEARS 5)

Information ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 499
Author(s):  
Zhijing Ye ◽  
Zheng O’Neill ◽  
Fei Hu

Heating, ventilation, and air conditioning (HVAC) is the largest source of residential energy consumption. Occupancy sensors’ data can be used for HVAC control since it indicates the number of people in the building. HVAC and sensors form a typical cyber-physical system (CPS). In this paper, we aim to build a hardware-based emulation platform to study the occupancy data’s features, which can be further extracted by using machine learning models. In particular, we propose two hardware-based emulators to investigate the use of wired/wireless communication interfaces for occupancy sensor-based building CPS control, and the use of deep learning to predict the building energy consumption with the sensor data. We hypothesize is that the building energy consumption may be predicted by using the occupancy data collected by the sensors, and question what type of prediction model should be used to accurately predict the energy load. Another hypothesis is that an in-lab hardware/software platform could be built to emulate the occupancy sensing process. The machine learning algorithms can then be used to analyze the energy load based on the sensing data. To test the emulator, the occupancy data from the sensors is used to predict energy consumption. The synchronization scheme between sensors and the HVAC server will be discussed. We have built two hardware/software emulation platforms to investigate the sensor/HVAC integration strategies, and used an enhanced deep learning model—which has sequence-to-sequence long short-term memory (Seq2Seq LSTM)—with an attention model to predict the building energy consumption with the preservation of the intrinsic patterns. Because the long-range temporal dependencies are captured, the Seq2Seq models may provide a higher accuracy by using LSTM architectures with encoder and decoder. Meanwhile, LSTMs can capture the temporal and spatial patterns of time series data. The attention model can highlight the most relevant input information in the energy prediction by allocating the attention weights. The communication overhead between the sensors and the HVAC control server can also be alleviated via the attention mechanism, which can automatically ignore the irrelevant information and amplify the relevant information during CNN training. Our experiments and performance analysis show that, compared with the traditional LSTM neural network, the performance of the proposed method has a 30% higher prediction accuracy.


2021 ◽  
Author(s):  
Khoder Jneid ◽  
Stephane Ploix ◽  
Patrick Reignier ◽  
Pierre Jallon

2021 ◽  
Author(s):  
Shichao Xu ◽  
Yangyang Fu ◽  
Yixuan Wang ◽  
Zheng O'Neill ◽  
Qi Zhu

2021 ◽  
Vol 16 (95) ◽  
pp. 33-47
Author(s):  
Aleksey V. Kychkin ◽  
◽  
Oleg V. Gorshkov ◽  
Vladislav A. Selivanov ◽  
Vitaliy A. Pavlov ◽  
...  

The development of application software for cyber-physical systems of buildings involves the widespread use of Internet of Things (IoT) integration platforms. In practice, the flexible functionality of IoT platforms often leads to additional costs for software enhancement of existing and connection of new units, in particular digital twins. The paper proposes a technological solution for the implementation of a digital twin of the ventilation process in the IoT control loop of heating, ventilation and air conditioning (HVAC) systems for buildings and industrial facilities. The implementation and execution of the digital twin in the form of a dynamic simulation model in the object-oriented modelling language Modelica in the OpenModelica environment is considered. The IoT platform InfluxData, based on the TICK stack, is considered as an example of an integration environment. It is a horizontally-oriented IoT platform that contains the mechanism for collecting data from devices and the InfluxDB time-series database for storing metrics. To integrate simulation models on Modelica with InfluxDB, an OMPython server is proposed. In this case, the integration scripts are executed in the Python language, which as a result extends the traditional capabilities of the IoT platform significantly to the level of a digitally twinned control system. This HVAC control involves adapting control loops by taking into account the dynamics of the air distribution process over the ventilation network, evaluating and compensating for process inertia. The publication was prepared within the framework of the Academic Fund Program at the HSE University in 2020–2021 (grant № 21-04-039).


Sign in / Sign up

Export Citation Format

Share Document