scholarly journals Spatial Analysis for Landscape Changes

2021 ◽  
Vol 11 (24) ◽  
pp. 11924
Author(s):  
Dario Gioia ◽  
Maria Danese

Landscape is the backcloth over which environmental and anthropic events occur, and recent increasing trends of natural and anthropic processes, such as urbanization, land-use changes, and extreme climate events, have a strong impact on landscape modification [...]

2016 ◽  
Vol 54 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Ceres Barros ◽  
Maya Guéguen ◽  
Rolland Douzet ◽  
Marta Carboni ◽  
Isabelle Boulangeat ◽  
...  

2019 ◽  
Vol 30 (8) ◽  
pp. 951-963 ◽  
Author(s):  
Stéphanie Horion ◽  
Eva Ivits ◽  
Wanda De Keersmaecker ◽  
Torbern Tagesson ◽  
Jürgen Vogt ◽  
...  

2017 ◽  
Vol 23 (10) ◽  
pp. 4045-4057 ◽  
Author(s):  
Ross E. Boucek ◽  
Michael R. Heithaus ◽  
Rolando Santos ◽  
Philip Stevens ◽  
Jennifer S. Rehage

2019 ◽  
Vol 96 ◽  
pp. 669-683 ◽  
Author(s):  
Enliang Guo ◽  
Jiquan Zhang ◽  
Yongfang Wang ◽  
Lai Quan ◽  
Rongju Zhang ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109126 ◽  
Author(s):  
Selena Ahmed ◽  
John Richard Stepp ◽  
Colin Orians ◽  
Timothy Griffin ◽  
Corene Matyas ◽  
...  

Ecology ◽  
2019 ◽  
Vol 100 (2) ◽  
pp. e02578 ◽  
Author(s):  
Martina Dal Bello ◽  
Luca Rindi ◽  
Lisandro Benedetti‐Cecchi

2021 ◽  
Vol 15 (3) ◽  
pp. e0009182
Author(s):  
Cameron Nosrat ◽  
Jonathan Altamirano ◽  
Assaf Anyamba ◽  
Jamie M. Caldwell ◽  
Richard Damoah ◽  
...  

Climate change and variability influence temperature and rainfall, which impact vector abundance and the dynamics of vector-borne disease transmission. Climate change is projected to increase the frequency and intensity of extreme climate events. Mosquito-borne diseases, such as dengue fever, are primarily transmitted by Aedes aegypti mosquitoes. Freshwater availability and temperature affect dengue vector populations via a variety of biological processes and thus influence the ability of mosquitoes to effectively transmit disease. However, the effect of droughts, floods, heat waves, and cold waves is not well understood. Using vector, climate, and dengue disease data collected between 2013 and 2019 in Kenya, this retrospective cohort study aims to elucidate the impact of extreme rainfall and temperature on mosquito abundance and the risk of arboviral infections. To define extreme periods of rainfall and land surface temperature (LST), we calculated monthly anomalies as deviations from long-term means (1983–2019 for rainfall, 2000–2019 for LST) across four study locations in Kenya. We classified extreme climate events as the upper and lower 10% of these calculated LST or rainfall deviations. Monthly Ae. aegypti abundance was recorded in Kenya using four trapping methods. Blood samples were also collected from children with febrile illness presenting to four field sites and tested for dengue virus using an IgG enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). We found that mosquito eggs and adults were significantly more abundant one month following an abnormally wet month. The relationship between mosquito abundance and dengue risk follows a non-linear association. Our findings suggest that early warnings and targeted interventions during periods of abnormal rainfall and temperature, especially flooding, can potentially contribute to reductions in risk of viral transmission.


Sign in / Sign up

Export Citation Format

Share Document