scholarly journals Comparison of Microencapsulated Phase Change Materials Prepared at Laboratory Containing the Same Core and Different Shell Material

2017 ◽  
Vol 7 (7) ◽  
pp. 723 ◽  
Author(s):  
Jessica Giro-Paloma ◽  
Cemil Alkan ◽  
Josep Chimenos ◽  
Ana Fernández
2010 ◽  
Vol 160-162 ◽  
pp. 7-12
Author(s):  
Yi Da Tang ◽  
Wen Heng Zheng ◽  
Zhong Hua Tang ◽  
Ling Wang

The nano-microencapsulated phase change materials were prepared ,with butyl stearate as core material, styrene-maleic anhydride copolymer (SMA) as dispersant and emulsifier, polyurea resin as shell material which was synthesized from monomer 2, 4- toluene diisocyanate (TDI) and diethylen etriamine (DETA),and was modified by glycerol, nanometer material(TiO2) as functional material. We have analyzed the compactness, stabilities, phase transition temperature, and bactericidal efficiency of microcapsules. The results show that the compactness properties and stabilities properties of the modified microcapsule, when the ratio of core material and shell material is 3:4, such as washing stability properties and thermal stability properties are obviously improved than that of non-modified, phase transition temperature rises from 23.2°C to 24.2°C,bactericidal efficiency of Nano-Micro-PCMs is 7~8 times more than that of separate using of nanometer material (TiO2), modified polyurea Nano-Micro-PCMs may have extensive application prospects in the fields of architecture, textile and air-conditioning filtering materials.


2012 ◽  
Vol 427 ◽  
pp. 45-50 ◽  
Author(s):  
Jun Feng Su ◽  
Sheng Bao Wang

Microencapsulated phase change materials (microPCMs) contain paraffin was fabricated by in-situ polymerization using methanol-modified melamine-formaldehyde (MMF) as shell material. The shell of microPCMs was sooth and compact with global shape, its thickness was not greatly affected by the core/shell ratio and emulsion stirring rate. More shell material in microPCMs could enhance the thermal stability and provide higher compact condition for core material. After a 100-times thermal cycling treatment, the microPCMs contain paraffin also nearly did not change the phase change behaviors of PCM. With the increasing of weight contents of microPCMs in gypsum board, the thermal conductivity (λ) values of composites had decreased. The simulation of temperature tests proved that the microPCMs/gypsum composite could store the time-dependent and intermittent solar energy, which did not necessarily meet the energy needs for space heating at all times.


Sign in / Sign up

Export Citation Format

Share Document