scholarly journals Study on Valve Strategy of Variable Cylinder Deactivation Based on Electromagnetic Intake Valve Train

2018 ◽  
Vol 8 (11) ◽  
pp. 2096 ◽  
Author(s):  
Maoyang Hu ◽  
Siqin Chang ◽  
Yaxuan Xu ◽  
Liang Liu

The camless electromagnetic valve train (EMVT), as a fully flexible variable valve train, has enormous potential for improving engine performances. In this paper, a new valve strategy based on the electromagnetic intake valve train (EMIV) is proposed to achieve variable cylinder deactivation (VCD) on a four-cylinder gasoline engine. The 1D engine model was constructed in GT-Power according to test data. In order to analyze the VCD operation with the proposed valve strategy, the 1D model was validated using a 3D code. The effects of the proposed valve strategy were investigated from the perspective of energy loss of the transition period, the mass fraction of oxygen in the exhaust pipe, and the minimum in-cylinder pressure of the active cycle. On the premise of avoiding high exhaust oxygen and oil suction, the intake valve timing can be determined with the variation features of energy losses. It was found that at 1200 and 1600 rpm, fuel economy was improved by 12.5–16.6% and 9.7–14.6%, respectively, under VCD in conjunction with the early intake valve closing (EIVC) strategy when the brake mean effective pressure (BMEP) ranged from 0.3 MPa to 0.2 MPa.

2012 ◽  
Vol 5 (2) ◽  
pp. 207-215 ◽  
Author(s):  
Rudolf Flierl ◽  
Frederic Lauer ◽  
Michael Breuer ◽  
Wilhelm Hannibal

2015 ◽  
Vol 77 (8) ◽  
Author(s):  
S. F. Zainal Abidin ◽  
M. F. Muhamad Said ◽  
Z. Abdul Latiff ◽  
I. Zahari ◽  
M. Said

There are many technologies that being developed to increase the efficiency of internal combustion engines as well as reducing their fuel consumption.  In this paper, the main area of focus is on cylinder deactivation (CDA) technology. CDA is mostly being applied on multi cylinders engines. CDA has the advantage to improve fuel consumption by reducing pumping losses at part load engine conditions. Here, the application of CDA on 1.6L four cylinders gasoline engine is studied. One-dimensional (1D) engine modeling work is performed to investigate the effect of intake valve strategy on engine performance with CDA. 1D engine model is constructed based on the 1.6L actual engine geometries. The model is simulated at various engine speeds at full load conditions. The simulated results show that the constructed model is well correlated to measured data. This correlated model is then used to investigate the CDA application at part load conditions. Also, the effects on the in-cylinder combustion as well as pumping losses are presented. The study shows that the effect of intake valve strategy is very significant on engine performance. Pumping losses is found to be reduced, thus improve fuel consumption and engine efficiency.


Author(s):  
Jan Zelenka ◽  
Claudio Hoff ◽  
Andreas Wimmer ◽  
Roland Berger ◽  
Josef Thalhauser

The present paper describes the investigations made using the electro-hydraulic intake valve timing system VCM® on a large bore gas engine. The first section explains what challenges have to be faced when developing concepts for present and future applications of large bore gas engines. Following an introduction to the VCM® system, an outline is presented of expected opportunities for using variable intake valve timing in combination with modern turbocharging concepts. The second section describes 0D/1D engine cycle simulations that were carried out to assess the influence of variable valve timing on the intake side compared to a fixed intake valve profile, which is the current standard for large bore gas engines. As a result, first predictions can be made about the gain in engine efficiency achieved with different operating strategies. In order to assess the performance potentials of the variable valve train, extensive experimental investigations were carried out on a single cylinder research engine based on GE’s Type 6 gas engine. The investigations consisted of varying engine parameters including varying the geometric compression ratio as well as the engine boundary conditions. It will be shown how intake valve timing can be used to optimize engine efficiency by improving gas exchange. Furthermore, variable intake valve timing affects the overall system behavior, e.g. distances to the engine’s operating limits. Special attention was paid to analyzing combustion itself, which is necessary due to the strong influence that intake valve timing has on the thermodynamic states of the cylinder charge.


MTZ worldwide ◽  
2021 ◽  
Vol 82 (2) ◽  
pp. 36-41
Author(s):  
Michael Elicker ◽  
Wolfgang Christgen ◽  
Jahaazeb Kiyanni ◽  
Maximilian Brauer

2014 ◽  
Vol 663 ◽  
pp. 336-341 ◽  
Author(s):  
Mohd Farid Muhamad Said ◽  
Zulkarnain Abdul Latiff ◽  
Aminuddin Saat ◽  
Mazlan Said ◽  
Shaiful Fadzil Zainal Abidin

In this paper, engine simulation tool is used to investigate the effect of variable intake manifold and variable valve timing technologies on the engine performance at full load engine conditions. Here, an engine model of 1.6 litre four cylinders, four stroke spark ignition (SI) engine is constructed using GT-Power software to represent the real engine conditions. This constructed model is then correlated to the experimental data to make sure the accuracy of this model. The comparison results of volumetric efficiency (VE), intake manifold air pressure (MAP), exhaust manifold back pressure (BckPress) and brake specific fuel consumption (BSFC) show very well agreement with the differences of less than 4%. Then this correlated model is used to predict the engine performance at various intake runner lengths (IRL) and various intake valve open (IVO) timings. Design of experiment and optimisation tool are applied to obtain optimum parameters. Here, several configurations of IRL and IVO timing are proposed to give several options during the engine development work. A significant improvement is found at configuration of variable IVO timing and variable IRL compared to fixed IVO timing and fixed IRL.


2017 ◽  
pp. 27-44
Author(s):  
M. Breuer ◽  
G. Bartsch ◽  
R. Friedfeldt ◽  
U. Heiter ◽  
U. Kramer ◽  
...  

2019 ◽  
pp. 45-62
Author(s):  
M. Breuer ◽  
D. Furtado ◽  
K. Grimm ◽  
S. Moormann ◽  
S. Schmitt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document