emission standards
Recently Published Documents


TOTAL DOCUMENTS

434
(FIVE YEARS 71)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol 2152 (1) ◽  
pp. 012045
Author(s):  
Lan Ma ◽  
Weijie Lian ◽  
Huiming Wu ◽  
Lijun Zhang ◽  
Yuxin Zhai

Abstract The treating fluid in the piston of inner-cooling oil channel is acid wastewater containing copper ion, it would adversely affect the aquatic ecosystem when emission directly. This paper use magnesium hydroxide as a wastewater treatment agent, to study the effect of magnesium hydroxide dose, stirring time, temerature on the results of treating fluid treatment, and get the best treatment conditions. The results indicate that magnesium hydroxide has an excellent performance including easy operation, super removing rate, supernatant can meet emission standards: c(Cu2+)≤2mg/L.


2021 ◽  
Author(s):  
Dilshad Ahmed ◽  
Zafar Iqbal Shams ◽  
Moinuddin Ahmed ◽  
Muhammad Fahim Siddique

Abstract Despite being one of the most populated cities globally, the air quality of Karachi is hardly ever comprehended. The present paper investigates the outdoor concentrations of 10 air pollutants, viz. NO, NO2, NOx, SO2, CO, O3, CH4, methane carbon, non-methane hydrocarbons, and total hydrocarbons at three different city sites, viz., Sohrab Goth, Defense Housing Authority, and North Nazimabad. The results demonstrate that these pollutants severely affected the city's air quality. The annual mean concentrations of both NO2 and SO2 exceeded the WHO guidelines at some study sites. The city experiences varied concentrations of major air pollutants because three types of fuel, viz. diesel, gasoline, and compressed natural gas, operate the motor vehicles in this conurbation. The study also correlates the various air pollutants with each other and with various meteorological factors. All the three oxides of nitrogen are statistically associated at all three sites with one another, with SO2 at Defense Housing Authority, with CO at North Nazimabad, and with meteorological factors at Sohrab Goth and Defense Housing Authority. Carbon monoxide is statistically associated with the meteorological factors only at North Nazimabad. The study suggests that higher air pollution in the city is due to the adoption of lenient vehicular emission standards because stringent emission standards cannot be adopted due to the non-availability of low or zero sulfur fuel. Moreover, ineffective regulation of exiting standards also contributes to higher vehicular emissions in the city.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1581
Author(s):  
Piotr Holnicki ◽  
Zbigniew Nahorski ◽  
Andrzej Kałuszko

The main subject of this paper is an analysis of the influence of changes in the air pollution caused by road traffic, due to its modernization, on the air quality in Warsaw conurbation, Poland. Using the Calpuff model, simulations of the yearly averaged concentrations of NOx, CO, PM10, and PM2.5 were performed, together with an assessment of the population exposure to individual pollutions. Source apportionment analysis indicates that traffic is the main source of NOx and CO concentrations in the city atmosphere. Utilizing the Euro norms emission standards, a scenario of vehicle emission abatement is formulated based on the assumed general vehicle fleet modernization and transition to Euro 6 emission standards. Computer simulations show a reduction in NOx concentrations attributed to emission mitigation of passenger cars, trucks and vans, and public transport buses, respectively. On the other hand, improving air quality in terms of CO concentrations depends almost exclusively on gasoline vehicle modernization. The implementation of the considered scenario causes an adequate reduction in the population exposure and related health effects. In particular, implementation of the scenario discussed results in a 47% reduction (compared with the baseline value) in the attributable yearly deaths related to NOx pollution. In spite of a substantial contribution of vehicle traffic to the overall PM pollution, modernization of the fuel combustion causes only minor final effects because the dominant share of PM pollution in Warsaw originates from the municipal sector and the transboundary inflow.


2021 ◽  
Author(s):  
Laene Oliveira Soares ◽  
Danielle Rodrigues de Moraes ◽  
Luis Hernández-Callejo ◽  
Ronney Arismel Mancebo Boloy

Abstract This paper discussed the possibility of replacing the series plug-in hybrid electric vehicle using the single-fuel spark-ignition engine (SFSIE) fuelled with gasoline A and Brazilian gasoline by the series plug-in hybrid electric vehicle fuelled with 50% bioethanol and 50% biogas in dual-fuel mode. The simulation of bioethanol, biogas and gasoline A combustion were carried out through GASEQ software to calculate the energy-ecological efficiency of the SFSIE and the dual-fuel spark ignition engine (DFSIE). The well-to-pump (WTP) emissions of the sugarcane bioethanol and biogas production pathway were evaluated through GREET software. The tank-to-wheel (TTW) emissions were determined to each series PHEV operating modes. Thus, the well-to-wheel emissions were calculated through the sum of the WTP, TTW and electricity mix emissions. The results showed that the energy-ecological efficiency for the DFSIE was 10.7% and 24.1% higher than that found for SFSIE fuelled with gasoline and Brazilian gasoline, respectively. The losses during the biogas production aggravate linearly the WTP emissions, and consequently the WTW emissions of the series PHEV. Besides that, the DFSIE presented 15.5% and 12.8 less TTW emissions than the SFSIE fuelled with gasoline A and Brazilian gasoline, respectively. Comparing to the emission standards, the DFSIE presented TTW emissions 30.5% higher than the EU emission standard by 2021. Although the DFSIE does not meet none of the emission standards, this engine mode can be an alternative to at least reduce the tailpipe emissions.


2021 ◽  
Vol 9 (11) ◽  
pp. 1241
Author(s):  
Yu Lu ◽  
Zhuhao Gu ◽  
Shewen Liu ◽  
Chunxiao Wu ◽  
Wu Shao ◽  
...  

The Energy Efficiency Design Index (EEDI) has been applied to ship carbon emission standards since 2013, ice ships subject to the Finnish Swedish Ice Class Rules (FSICR) also need to meet the requirements of EEDI. In this study, the engine power requirements by EEDI at different stages for the considered ice class ships with different ice classes (1C, 1B, 1A, 1A Super) are compared with engine power requirements obtained from the resistance calculated by FSICR or Lindqvist method. Three different bow shapes for the considered ice class ships and different pack ice coverage are studied. The results from FSICR or Lindqvist formula show that 1A Super ice classes for all considered bow shapes cannot meet the requirement by EEDI at Phase 2 and 3; For 1B and 1A class, some bow shapes can meet the EEDI requirement for all stages, but some cannot; For 1C class, all bow shapes can meet the EEDI requirements for all stages. The ship main engine power requirements under different pack ice concentration are studied and compared to EEDI requirements.


2021 ◽  
Vol 850 (1) ◽  
pp. 012010
Author(s):  
S Yuvaraj ◽  
C J Thomas Renald ◽  
A P Senthil Kumar ◽  
K Sadesh ◽  
D Naveen Promoth

Abstract In the current age drones are broadly utilized for different applications in pretty much every field. Because of the disturbing expense of the glow fuel utilized in the RC motors, utilization of the equivalent includes a ton of capital. Adding to it, the current fuel brings about intermittent combustion is in demand of alternate fuel. This paper manages the investigation of existing fuel synthesis and discovering the cost required to dispose of the high capital included, so that considerably more tests and study utilizing the RC Engines 2.5 cc can be completed easily. Methanol and Castor oil Combination is considered as an alternate fuel. The approach includes testing of the fuel to decipher the substance parts and their individual pieces through a progression of tests. Followed by the study of possible additives to enhance the performance of the engine without actually altering the timing intervals. The new creation of the fuel showed up is blended in with extraordinary hardware and the equivalent is tried for essential fuel properties viz., Density, Flash point, Fire point, Calorific value, and so forth The productivity arrangement is made utilizing a pulley instrument and the equivalent is tried for both the energizes. Performance of the R/C aircraft engine was tested with existing glow fuel and the new blend. Results are compared and concluded that the designed blend is a potent alternate fuel for R/C aircraft engines. *Future scope: It can be further tested for its SFC and emission standards. The outcome shows that the new fuel is exceptionally cost productive and the essential substance properties are profoundly improved.


Sign in / Sign up

Export Citation Format

Share Document