scholarly journals An Intelligent Hybrid Energy Management System for a Smart House Considering Bidirectional Power Flow and Various EV Charging Techniques

2019 ◽  
Vol 9 (8) ◽  
pp. 1658 ◽  
Author(s):  
Muhammad Kashif Rafique ◽  
Saad Ullah Khan ◽  
Muhammad Saeed Uz Zaman ◽  
Khawaja Khalid Mehmood ◽  
Zunaib Maqsood Haider ◽  
...  

Compelled by environmental and economic reasons and facilitated by modern technological advancements, the share of hybrid energy systems (HES) is increasing at modern smart house (SH) level. This work proposes an intelligent hybrid energy management system (IHEMS) for an SH connected to a power network that allows a bidirectional power flow. The SH has electrical and thermal power loops, and its main components include renewable energy from wind and photovoltaics, electric vehicle (EV), battery energy storage system, a fuel cell which serves as a micro-combined heat and power system, and a boiler. The proposed IHEMS models the components of the SH, defines their constraints, and develops an optimization model based on the real coded genetic algorithm. The key features of the developed IHEMS are highlighted under six simulation cases considering different configurations of the SH components. Moreover, the standard EV charging techniques are compared, and it is observed that the charging method which is flexible in timing and power injection to the EV is best suited for the economic operation of the SH. The simulation results reveal that the proposed IHEMS minimizes the 24-hour operational cost of the SH by optimally scheduling the energy resources and loads.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 574
Author(s):  
Muhammad Hilal Khan ◽  
Azzam Ul Asar ◽  
Nasim Ullah ◽  
Fahad R. Albogamy ◽  
Muhammad Kashif Rafique

Energy consumption in buildings is expected to increase by 40% over the next 20 years. Electricity remains the largest source of energy used by buildings, and the demand for it is growing. Building energy improvement strategies is needed to mitigate the impact of growing energy demand. Introducing a smart energy management system in buildings is an ambitious yet increasingly achievable goal that is gaining momentum across geographic regions and corporate markets in the world due to its potential in saving energy costs consumed by the buildings. This paper presents a Smart Building Energy Management system (SBEMS), which is connected to a bidirectional power network. The smart building has both thermal and electrical power loops. Renewable energy from wind and photo-voltaic, battery storage system, auxiliary boiler, a fuel cell-based combined heat and power system, heat sharing from neighboring buildings, and heat storage tank are among the main components of the smart building. A constraint optimization model has been developed for the proposed SBEMS and the state-of-the-art real coded genetic algorithm is used to solve the optimization problem. The main characteristics of the proposed SBEMS are emphasized through eight simulation cases, taking into account the various configurations of the smart building components. In addition, EV charging is also scheduled and the outcomes are compared to the unscheduled mode of charging which shows that scheduling of Electric Vehicle charging further enhances the cost-effectiveness of smart building operation.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3268
Author(s):  
Mehdi Dhifli ◽  
Abderezak Lashab ◽  
Josep M. Guerrero ◽  
Abdullah Abusorrah ◽  
Yusuf A. Al-Turki ◽  
...  

This paper proposes an enhanced energy management system (EEMS) for a residential AC microgrid. The renewable energy-based AC microgrid with hybrid energy storage is broken down into three distinct parts: a photovoltaic (PV) array as a green energy source, a battery (BT) and a supercapacitor (SC) as a hybrid energy storage system (HESS), and apartments and electric vehicles, given that the system is for residential areas. The developed EEMS ensures the optimal use of the PV arrays’ production, aiming to decrease electricity bills while reducing fast power changes in the battery, which increases the reliability of the system, since the battery undergoes fewer charging/discharging cycles. The proposed EEMS is a hybrid control strategy, which is composed of two stages: a state machine (SM) control to ensure the optimal operation of the battery, and an operating mode (OM) for the best operation of the SC. The obtained results show that the EEMS successfully involves SC during fast load and PV generation changes by decreasing the number of BT charging/discharging cycles, which significantly increases the system’s life span. Moreover, power loss is decreased during passing clouds phases by decreasing the power error between the extracted power by the sources and the required equivalent; the improvement in efficiency reaches 9.5%.


Author(s):  
Mohamed S. Taha ◽  
Hussein Hassan Abdeltawab ◽  
Yasser Abdel-Rady I. Mohamed

Sign in / Sign up

Export Citation Format

Share Document