scholarly journals Evaluation of the Undrained Shear Strength in Preconsolidated Cohesive Soils Based on the Seismic Dilatometer Test

2019 ◽  
Vol 9 (8) ◽  
pp. 1660
Author(s):  
Paweł Galas ◽  
Zbigniew Lechowicz ◽  
Maria Jolanta Sulewska

The undrained shear strength in cohesive soils can be evaluated based on measurements obtained from the standard dilatometer test (DMT) using single- and multi-factor empirical relationships. However, the empirical relationships presented in the literature may sometimes show relatively high values of the maximum relative error. The add-on seismic module to the seismic dilatometer test (SDMT) extends parameters measurable in a standard dilatometer test by the shear wave velocity Vs as an independent variable. Therefore, a method for evaluating the undrained shear strength in cohesive soils based on data obtained from the seismic dilatometer test is presented in this study. In the method proposed, the two-factor empirical relationship for evaluating the normalized undrained shear strength τfu/σ’v is used based on independent variables: The normalized difference between the corrected second pressure reading and the corrected first pressure reading (p1 − po)/σ’v and the normalized shear wave velocity Vs/100. The proposed two-factor empirical relationship provides a more reliable evaluation of the undrained shear strength in the tested Pleistocene and Pliocene clays in comparison to the empirical relationships presented in the literature, with a maximum relative error max RE at about ±20% and the mean relative error RE at about 8%.

2018 ◽  
Vol 8 (8) ◽  
pp. 1395 ◽  
Author(s):  
Zbigniew Lechowicz ◽  
Masaharu Fukue ◽  
Simon Rabarijoely ◽  
Maria Sulewska

The undrained shear strength of organic soils can be evaluated based on measurements obtained from the dilatometer test using single- and multi-factor empirical correlations presented in the literature. However, the empirical methods may sometimes show relatively high values of maximum relative error. Therefore, a method for evaluating the undrained shear strength of organic soils using artificial neural networks based on data obtained from a dilatometer test and organic soil properties is presented in this study. The presented neural network, with an architecture of 5-4-1, predicts the normalized undrained shear strength based on five independent variables: the normalized net value of a corrected first pressure reading (po − uo)/σ′v, the normalized net value of a corrected second pressure reading (p1 − uo)/σ′v, the organic content Iom, the void ratio e, and the stress history indictor (oc or nc). The neural model presented in this study provided a more reliable prediction of the undrained shear strength in comparison to the empirical methods, with a maximum relative error of ±10%.


1970 ◽  
Vol 7 (4) ◽  
pp. 482-493 ◽  
Author(s):  
V. A. Sowa

The pulling capacity of cylindrical concrete piles cast in situ in bored holes is examined for piles constructed in sandy or cohesive soils. On the basis of the data presented, it is concluded that the pulling capacity of these piles in cohesive soils can be estimated approximately, while the pulling capacity of piles in sandy soil is considerably more difficult to estimate. Estimating the pulling capacity of piles in cohesive soils is based on an empirical relationship between soil adhesion and the undrained shear strength. A possible explanation for the difficulty in estimating the pulling capacity of piles in sandy soils is suggested.


2017 ◽  
Vol 62 (2) ◽  
pp. 367-384
Author(s):  
Sebastian Olesiak

Abstract Soil strength parameters needed for the calculation of bearing capacity and stability are increasingly determined from field testing. This paper presents a method to determine the undrained shear strength cuWST of the soil, based on the Weight Sounding Test (WST). The innovative solution which allows for a significant reduction of equipment needed for geotechnical field investigation is presented. The proposed method is based on an additional measurement of the torque during testing. It then becomes possible to estimate the undrained shear strength, cuWST of the soil, using the correlation given in this paper. The research results presented in this paper were carried out on selected cohesive soils, Miocene clays from the Carpathian Foredeep.


2015 ◽  
Vol 18 (2) ◽  
pp. 149-156 ◽  
Author(s):  
Mohamed Bensoula ◽  
Hanifi Missoum ◽  
Karim Bendani

<p>This study uses experimental triaxial tests with monotonic loading to develop empirical relationships to estimate undrained critical shear strength. The effect of the fines content on undrained shear strength is analyzed for different density states. The parametric analysis indicates that, based on the soil void ratio and fine content properties, the undrained critical shear strength first increases and then decreases as the proportion of fines increases, which demonstrates the influence of fine content on a soil’s vulnerability to liquefaction. A series of monotonic undrained triaxial tests were performed on reconstituted saturated sand-silt mixtures. Beyond 30% fines content, a fraction of the silt participates in the soil’s skeleton chain force. In this context, the concept of the equivalent intergranular void ratio may be an appropriate parameter to express the critical shear strength of the studied soil. This parameter is able to control the undrained shear strength of non-plastic silt and sand mixtures with different densities.</p><p> </p><p><strong>Resumen</strong></p><p>Este estudio utiliza evaluaciones experimentales triaxiales con cargas repetitivas para desarrollar relaciones empíricas y estimar la tensión crítica de corte bajo condiciones no drenadas. El efecto de contenido de finos en la tensión de corte sin drenar se analizó en diferentes estados de densidad. El análisis paramétrico indica que, basado en la porosidad del suelo y las propiedades del material de finos, la tensión de corte sin drenar primero se incrementa y luego decrece mientras la proporción de finos aumenta, lo que demuestra la influencia de contenido de finos en la vulnerabilidad del suelo a la licuación. Una serie de las evaluaciones se realizó en  mezclas rehidratadas y saturadas de arena y cieno. Más allá del 30 % de los contenidos finos, una fracción del cieno hace parte principal de la cadena de fuerza del suelo. En este contexto, el concepto de porosidad equivalente intergranular puede ser un parámetro apropiado para expresar la tensión crítica de corte del suelo estudiado. Este parámetro nos permite controlar la tensión de corte sin drenar de cieno no plástico y mezclas de arena de densidades diferentes.</p>


Geosciences ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 446
Author(s):  
Theis Raaschou Andersen

The continuous growth of cities in combination with future climate changes present urban planners with significant challenges, as traditional urban sewer systems are typically designed for the present climate. An easy and economically feasible way to mitigate this is to introduce a Sustainable Urban Drainage System (SUDS) in the urban area. However, the lack of knowledge about the geological and hydrogeological setting hampers the use of SUDS. In this study, 1315 ha of high-density electromagnetic (DUALEM-421S) data, detailed lithological soil descriptions of 614 boreholes, 153 infiltration tests and 250 in situ vane tests from 32 different sites in the Central Denmark Region were utilised to find quantitative and qualitative regional relationships between the resistivity and the lithology, the percolation rates and the undrained shear strength of cohesive soils at a depth of 1 meter below ground surface (m bgs). The qualitative tests enable a translation from resistivity to lithology as well as a translation from lithology to percolation rates with moderate to high certainty. The regional cut-off value separating sand-dominated deposits from clay-dominated deposits is found to be between 80 to 100 Ωm. The regional median percolation rates for sand and clay till is found to be 9.9 × 10−5 m/s and 2.6 × 10−5 m/s, respectively. The quantitative results derived from a simple linear regression analysis of resistivity and percolation rates and resistivity and undrained shear strength of cohesive soils are found to have a very weak relationship on a regional scale implying that in reality no meaningful relationships can be established. The regional qualitative results have been tested on a case study area. The case study illustrates that site-specific investigations are necessary when using geophysical mapping to directly estimate lithology, percolation rates and undrained shear strength of cohesive soils due to the differences in soil properties and the surrounding environment from site to site. This study further illustrates that geophysical mapping in combination with lithological descriptions, infiltration tests and groundwater levels yield the basis for the construction of detailed planning maps showing the most suitable locations for infiltration. These maps provide valuable information for city planners about which areas may preclude the establishment of infiltration-based SUDS.


Sign in / Sign up

Export Citation Format

Share Document