scholarly journals Effect of Waste Engine Oil and Waste Cooking Oil on Performance Improvement of Aged Asphalt

2019 ◽  
Vol 9 (9) ◽  
pp. 1767 ◽  
Author(s):  
Haibin Li ◽  
Bo Dong ◽  
Wenjie Wang ◽  
Guijuan Zhao ◽  
Ping Guo ◽  
...  

In order to explore the applicability of waste engine oil and waste cooking oil used in aged asphalt, the effect of waste engine oil and waste cooking oil on aged asphalt recycling was studied through the analysis of the improvement of its physical, chemical, and rheological properties. Six aged asphalt binders with different aging times were obtained by indoor test simulation using the Thin Film Oven Test at 163 °C. Then, waste engine oil and waste cooking oil with five different dosages were added to investigate improvement performances. The results clearly demonstrated that waste engine oil and waste cooking oil could soften and recover the work ability of aged asphalt effectively. Furthermore, the physical, chemical, and rheological performances of six aged asphalts could be improved to normal level of virgin asphalt if the content of waste engine oil or waste cooking oil was suitable. The rheological properties of aged asphalt with waste cooking oil had better improvement than that with waste engine oil. Overall, the good applicability would provide waste oil a much wider service range in asphalt pavement recycling field. It also provided a method of developing new rejuvenating agent with the two waste oils to achieve complex synergism effect. Moreover, it realized the waste cyclic utilization and environmental protection.

2020 ◽  
Vol 6 (2) ◽  
pp. 132
Author(s):  
Ratna Yuniarti ◽  
Desi Widianty ◽  
Rohani Rohani ◽  
Hasyim Hasyim

Asphalt concrete wearing course is laid on the top of road pavement so that directly exposed to ultra violet light and other environment impact. The higher temperature at the pavement surface and exposure to atmospheric oxygen accelerated aging cause asphalt to stiffen and become brittle. This aging result decrease the binding of asphalt and aggregate leads various damage of pavement. The aged asphalt rejuvenated and recycled with rejuvenating agent has been developed to reduce the use of virgin material for road maintenance. This article aims to review durability of asphalt concrete wearing course using waste cooking oil, epoxy resin, kerosene and waste engine oil as asphalt rejuvenators. Aging asphalt was prepared by heating in an oven at 85 oC for 120 hours (long term oven aging). Durability was assessed from the value of Marshall immersion which represent the resistance of asphalt mixture at water immersion. Relation between Marshall immersion and voids in mix (VIM), voids in the mineral aggregate (VMA), voids filled with bitumen (VFB) and density are also evaluated. From the analysis, it can be concluded that the use of waste cooking oil, epoxy resin, kerosene and waste engine oil as asphalt rejuvenators increase the durability of asphalt mixture containing the aged asphalt.


2021 ◽  
Vol 7 (3) ◽  
pp. 502-517
Author(s):  
Munder Bilema ◽  
Yusri Bin Aman ◽  
Norhidayah Abdul Hassan ◽  
Zaid Al-Saffar ◽  
Kabiru Ahmad ◽  
...  

High demand for asphalt binders in road construction verifies the need of finding alternative materials through asphalt pavement recycling. This paper investigated the impact of different rejuvenators on the performance of an aged asphalt binder. Virgin Olive oil, virgin cooking oil, waste cooking oil, virgin engine oil, and waste engine oil were added to a 30/40 penetration grade aged asphalt binder at a fixed oil content of 4% for all types. The wet method was used to blend the rejuvenators and aged asphalt binder. The physical, rheological, and chemical properties of the rejuvenated asphalt binder were evaluated using several laboratory tests which include penetration, softening point, bleeding, loss on heating, storage stability, penetration index, ductility, viscosity, dynamic shear rheometer, and Fourier transform infrared spectroscopy. The outcomes of the physical properties showed that the olive, waste, and virgin cooking rejuvenators can restore the aged asphalt binder to a penetration grade of 60/70. In contrast, the virgin and waste engine oil required a more quantity of oil to rejuvenate the aged asphalt binder. A sufficient amount of rejuvenator could regenerate the (G*/sin δ), (δ°), and (G*) for the aged asphalt binder. The addition of virgin olive and cooking oils in aged asphalt led to a rutting issue. No chemical reactions were observed with the addition of rejuvenators but they give an impact on reducing the oxidation level of the aged asphalt binder. As a result, further research should be performed on waste cooking oil given that it is inexpensive and provides excellent performance results. Doi: 10.28991/cej-2021-03091669 Full Text: PDF


2020 ◽  
Vol 17 (2) ◽  
pp. 1040-1043 ◽  
Author(s):  
Nur Shahira Samsuri ◽  
Norhidayah Abdul Hassan ◽  
Nurul Hidayah Mohd Kamaruddin ◽  
Mohd Rosli Hainin ◽  
Mohd Ezree Abdullah ◽  
...  

This research examines the impacts of adding various source and percentages of waste engine oil (WEO) on the physical and rheological characteristics of asphalt binder comprising aged asphalt binder. A base asphalt binder with penetration grade of 80/100 and aged binder were blended with three sources of WEO at 0%, 5%, 10%, 15%, and 20% by the weight of asphalt binder. These oils were collected from light vehicle (motorcycle), heavy vehicle (lorry), and heavy machinery (tractor). Penetration and softening point procedures were done to define the physical properties of the unmodified and modified asphalt binders. Meanwhile, the rheological property was evaluated with a dynamic shear rheometer (DSR). The results show that the high percentages of WEO increased the penetration and decreased the softening point. The addition of 15% and 20% of WEO especially from heavy machinery reduced the rutting resistance. Therefore, it is recommended that the modification of aged binder with these types of WEO should be up to 10%.


2020 ◽  
Vol 45 (10) ◽  
pp. 7987-7997 ◽  
Author(s):  
Abdullah Al Mamun ◽  
H. I. Al-Abdul Wahhab ◽  
M. A. Dalhat

Abstract In road construction, different types of waste oil have been recommended to overcome the stiffening effect of reclaimed asphalt pavement content. However, the selection of an effective rejuvenator based on a comparative study can lead to using the resources more efficiently. In this study, waste cooking oil and waste engine oil are used to rejuvenate three different percentages (30%, 40%, and 50%) of reclaimed asphalt pavement following the current maximum industrial adaptability. The waste oil rejuvenated mixtures are compared to the fresh mixture, and mixtures rejuvenated with commercial rejuvenator. The moisture sensitivity, indirect tensile strength, and resilient modulus of the various asphalt mixtures are analyzed. Based on the statistical analyses and overall ranking, it is concluded that 7% of waste engine oil performs better till 40% of reclaimed asphalt pavement, whereas 13% of waste cooking oil can be used till 50% of reclaimed asphalt pavement.


2020 ◽  
Vol 47 (7) ◽  
pp. 822-832 ◽  
Author(s):  
Tao Bai ◽  
Zi-ang Hu ◽  
Xiaodi Hu ◽  
Yang Liu ◽  
Luis Fuentes ◽  
...  

The work presented in this paper aims to improve the rheological properties and ductility characteristics of aged (short-term) asphalt-binder using waste engine oil (WEO). The WEO was injected into the aged asphalt-binder as three rejuvenators, namely A, B, and C — with Rejuvenator A being the treated WEO only. Rejuvenator B consists of treated WEO and furfural extraction oil. Rejuvenator C consists of Rejuvenator B composition plus epoxy resin. The asphalt-binder physical, ductility, rheological, and morphological properties were measured using the standard penetration, softening point, ductility, dynamic shear rheometer, bending beam rheometer, and Fourier transform infrared spectroscopy tests, respectively. Overall, the laboratory test results, with Rejuvenator C exhibiting superiority, indicated that, if properly preprocessed and treated with additive modifications, WEO can be beneficially used to rejuvenate short-term aged asphalt-binders, which can be a significant milestone towards “green” asphalt and environmental conservatism.


Sign in / Sign up

Export Citation Format

Share Document