aged asphalt
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 90)

H-INDEX

18
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 380
Author(s):  
Jiangang Yang ◽  
Luhua Luo ◽  
Jie Gao ◽  
Jing Xu ◽  
Chengping He

China’s highway asphalt pavement has entered the stage of major repair, and improving the utilization rate of recycled asphalt pavement (RAP) is the main issue. The key link affecting the performance of recycled asphalt mixtures is the regeneration of aged asphalt, and the effect of the regenerant dosing on the high-temperature performance and viscosity of aged asphalt is the main content to be studied in this research. The aging behavior of asphalt seriously affects the roadworthiness of asphalt mixtures. In this study, we investigated the effect of changes in the microscopic properties of the aged asphalt on its viscosity properties during regeneration using gel permeation chromatography (GPC), Fourier-transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM) as well as Brinell viscosity tests. This study simulated asphalt aging by the RTFOT test, and then we obtained an aged asphalt with a needle penetration of 30. We prepared different regenerated asphalts by adding regeneration agent with doses of 2%, 4%, and 6% to the aged asphalt. The results showed that the regeneration agent could effectively reduce the viscosity of the aged asphalt, which can play a positive role in improving the construction and ease of the aged asphalt. Rejuvenation agents affected the aging asphalt sulfoxide and carbon group indices. Moreover, rejuvenation agents can also significantly reduce the intensities of their characteristic functional group indices. The results of the AFM test showed that the increase in the dose of regeneration agent increased the number of the asphalt bee-like structures and decreased the area of individual bee-like structures. The results of the GPC test were consistent with the results of the AFM test, and the increase in the dose of regeneration agent reduced the asphalt macromolecule content. The viscosity properties and microstructure of the aged asphalt changed positively after the addition of the regeneration agent, indicating that the regeneration agent had a degrading and diluting effect on macromolecules.


2021 ◽  
Author(s):  
Behzad Behnia

This chapter focuses on various applications of acoustic emissions (AE) technique in evaluation of cracking in asphalt pavements including (1) assessment of low-temperature cracking of asphalt binders and mixtures and (2) quantitative characterization of rejuvenators’ efficiency in restoring aged asphalt pavements to their crack-resistant state. The AE-based embrittlement temperature results of 24 different asphalt materials consisting of eight different binders, each at three oxidative aging levels are presented. Results show that embrittlement temperatures correlated well with corresponding bending beam rheometer (BBR-based) critical cracking temperatures with R2 = 0.85. This chapter also presents application of AE for evaluation of rejuvenators’ efficiency on asphalt materials at various oxidative aging levels. The Geiger’s iterative source location method was employed to accurately determine embrittlement temperatures throughout the thickness of rejuvenator-treated asphalt samples. Results showed that the low temperature cracking properties of oxidative aged materials after 2 weeks of dwell time of rejuvenator have been recuperated. Moreover, it was observed that cracking characteristics of aged asphalt 6–8 weeks after applying rejuvenator far exceeded that of the virgin materials. The promising results suggest that the AE technique can be considered as a viable approach for the assessment of low temperature behavior of asphalt pavements.


2021 ◽  
pp. 130230
Author(s):  
Haibin Li ◽  
Zixuan Feng ◽  
Abdulakeem Temitope Ahmed ◽  
Mulbah Yombah ◽  
Canyang Cui ◽  
...  

2021 ◽  
pp. 301-307
Author(s):  
S.H. Chen ◽  
X. Cai* ◽  
L. Chen ◽  
K.H. Wu ◽  
J.W. Xie ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7080
Author(s):  
Xiaorui Zhang ◽  
Chao Han ◽  
Xinxing Zhou ◽  
Frédéric Otto ◽  
Fan Zhang

Soybean-derived bio-oil is one of the vegetable-based oils that is gaining the most interest for potential use in the rejuvenation of aged asphalt binders. This laboratory study was conducted to characterize and quantify the diffusion and rheological properties of bio-oil-rejuvenated aged asphalt binder (BRAA) using soybean oil. In the study, the chemical structure of the soybean oil was comparatively characterized using an element analyzer (EA), gel permeation chromatography (GPC), and a Fourier infrared (FTIR) spectrometer, respectively. Based on the chemical structure of the bio-oil, BRAA molecular models were built for computing the diffusion parameters using molecular dynamic simulations. Likewise, a dynamic shear rheometer (DSR) test device was used for measuring and quantifying the rheological properties of the aged asphalt binder rejuvenated with 0%, 1%, 2%, 3%, 4%, and 5% soybean oil, respectively. The laboratory test results indicate that bio-oil could potentially improve the diffusion coefficients and phase angle of the aged asphalt binder. Similarly, the corresponding decrease in the complex shear modulus has a positive effect on the low-temperature properties of BRAA. For a bio-oil dosage 4.0%, the diffusion coefficients of the BRAA components are 1.52 × 10−8, 1.33 × 10−8, 3.47 × 10−8, 4.82 × 10−8 and 3.92 × 10−8, respectively. Similarly, the corresponding reduction in the complex shear modulus from 1.27 × 107 Pa to 4.0 × 105 Pa suggests an improvement in the low-temperature properties of BRAA. Overall, the study contributes to the literature on the potential use of soybean-derived bio-oil as a rejuvenator of aged asphalt binders.


Sign in / Sign up

Export Citation Format

Share Document