scholarly journals Erratum: Hassan, M.; et al. An Assessment of the South Asian Summer Monsoon Variability for Present and Future Climatologies Using a High Resolution Regional Climate Model (RegCM4.3) under the AR5 Scenarios. Atmosphere 2015, 6, 1833–1857

Atmosphere ◽  
2015 ◽  
Vol 7 (1) ◽  
pp. 3
Author(s):  
2020 ◽  
Author(s):  
Shiwansha Mishra ◽  
Dilip Ganguly ◽  
Puneet Sharma

<p>While the monsoon onset is recognized as a rapid, substantial, and sustained increase in rainfall over large parts of south Asia, the withdrawal marks the return to dry conditions. Normally, the south Asian summer monsoon onset occurs around 1<sup>st</sup> June over extreme south of peninsular India, which gradually advances to extreme northwest of India by around 15<sup>th</sup> July. The withdrawal starts from northwest India from around 1st September and from extreme south peninsular India by around 30th September. The determinations of the onset and withdrawal dates of monsoon have great economic significance for this region as they influence many agriculture and water resource management decisions in one of the most highly populated regions of the world. Several studies involving global model simulations have shown that changing aerosol emissions could result in significant changes in the seasonal mean precipitation distribution over India. A few studies also show that presence of absorbing aerosols in the foothills of Himalayas and over the Tibetan plateau could increase the moisture convergence over India thereby causing an advancement and intensification of the monsoon precipitation. However, most of the previous studies, which investigated the impact of anthropogenic emissions on the monsoon, are limited to understanding the impact of various emission changes on the seasonal mean monsoon characteristics. In the present study, we try to understand the sensitivity of the onset and withdrawal period of the south Asian summer monsoon system to changes in anthropogenic emissions using a climate model (CESM1.2). We diagnose the onset and withdrawal of the south Asian monsoon by analyzing the variability in vertically integrated moisture transport (VIMT) over the south Asian region and following the definition of hydrologic onset and withdrawal index (HOWI) defined by Fasullo et al. (2002). We examined the effect of changing emissions anthropogenic aerosol, greenhouse gases and both on the onset and withdrawal of the south Asian summer monsoon system. Our preliminary results suggest that increases in the emissions of aerosols and greenhouse gases from anthropogenic sources from pre-industrial to present day could possibly result in significant delay in the onset and advancement in withdrawal of the south Asian summer monsoon system thereby shortening the length of the monsoon season. More results with greater detail will be presented.</p>


2012 ◽  
Vol 69 (5) ◽  
pp. 1681-1690 ◽  
Author(s):  
Yajuan Song ◽  
Fangli Qiao ◽  
Zhenya Song

Abstract Simulation and prediction of the South Asian summer monsoon in a climate model remain a challenge despite intense efforts by the atmosphere and ocean research community. Because the phenomenon arises from the interaction of the atmosphere with the upper ocean, a deficiency in the simulation of the latter can lead to a poor simulation of the atmospheric meridional circulation. This study demonstrates that a significant improvement can be obtained in the simulation of the summer monsoon by correcting a prevailing deficiency in the mixed layer simulation of the Indian Ocean. A particular physical process of the nonbreaking wave–ocean mixing parameterized as Bυ, which has not been considered in any climate model, is included in this study to enhance the vertical mixing in the upper ocean. Results show that the inclusion of this mixing process in a climate model leads to a better simulation of the ocean mixed layer, especially in the regions where the mixing was previously underestimated. The improved mixed layer simulation further results in stronger meridional differential heating, which drives stronger low-level monsoonal winds and results in stronger moisture transport and convergence, especially in the northern Indian Ocean. Moisture convergence into the Bay of Bengal is significantly enhanced and in general the spatial distribution of moisture is more consistent with observations. The directly driven monsoonal winds by the differential heating are further amplified by the resultant latent heating, which generates not only a wind amplitude comparable to the observations but also a correct vertical structure.


Sign in / Sign up

Export Citation Format

Share Document