river runoff
Recently Published Documents


TOTAL DOCUMENTS

592
(FIVE YEARS 181)

H-INDEX

41
(FIVE YEARS 5)

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 118
Author(s):  
Andrey Kalugin

The main goal of this study was to obtain the attribution results of a physical assessment of the modern hydrological consequences of separately natural and anthropogenic components of climate change, based on the synthesis of detailed process-based models of river runoff formation and an ensemble of Earth system models (ESMs) within the large river basins in Eastern Siberia. This approach allows calculating the river flow using ESM-based data over the observation period under two scenarios, considering: (1) the anthropogenic impact of increasing greenhouse gas emissions and (2) only internal fluctuations of the climate system and natural external forcing. According to the results of the numerical experiments, the attributions of anthropogenic components of climate change in the dynamics of the Lena runoff are weak, i.e., during the observation period, the Lena River flow statistically significantly increases, but it occurs mainly due to natural climate variability. The changes in the Selenga runoff are intensely influenced by the anthropogenic component of climate change. Since the 1970s, the Selenga runoff increased under natural climatic conditions, but since the mid-1980s, it decreased under anthropogenic greenhouse gas emissions, due to reduced summer precipitation. This was the main reason for the last low-water period of 1996–2017 in the Selenga basin.


2021 ◽  
Vol 8 ◽  
Author(s):  
Vladimir Maderich ◽  
Kyeong Ok Kim ◽  
Roman Bezhenar ◽  
Kyung Tae Jung ◽  
Vazira Martazinova ◽  
...  

The North Atlantic and Arctic oceans, along with the North Pacific, are the main reservoirs of anthropogenic radionuclides introduced in the past 75 years. The POSEIDON-R compartment model was applied to the North Atlantic and Arctic oceans to reconstruct 137Cs contamination in 1945–2020 due to multiple sources: global fallout, exchange flows with other oceans, point-source inputs in the ocean from reprocessing plants and other nuclear facilities, the impact of the Chernobyl accident and secondary contamination resulting from river runoff and redissolution from bottom sediments. The model simulated the marine environment as a system of 3D compartments comprising the water column, bottom sediment, and biota. The dynamic model described the transfer of 137Cs through the pelagic and benthic food chains. The simulation results were validated using the marine database MARIS. The calculated concentrations of 137Cs in the seaweed and non-piscivorous and piscivorous pelagic fish mostly followed the concentration of 137Cs in water. The concentration in coastal predator fish lagged behind the concentration in water as a result of a diet that includes both pelagic and benthic organisms. The impact of each considered source on the total concentration of 137Cs in non-piscivorous fish in the regions of interest was analyzed. Whereas the contribution from global fallout dominated in 1960–1970, in 1970–1990, the contribution of 137Cs released from reprocessing plants exceeded the contributions from other sources in almost all considered regions. Secondary contamination due to river runoff was less than 4% of ocean influx. The maximum total inventory of 137Cs in the Arctic Ocean (31,122 TBq) was reached in 1988, whereas the corresponding inventory in the bottom sediment was approximately 6% of the total. The general agreement between simulated and observed 137Cs concentrations in water and bottom sediment was confirmed by the estimates of geometric mean and geometric standard deviation, which varied from 0.89 to 1.29 and from 1.22 to 1.87, respectively. The approach used is useful to synthesize measurement and simulation data in areas with observational gaps. For this purpose, 13 representative regions in the North Atlantic and Arctic oceans were selected for monitoring by using the “etalon” method for classification.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3508
Author(s):  
Vytautas Akstinas ◽  
Tomas Virbickas ◽  
Jūratė Kriaučiūnienė ◽  
Diana Šarauskienė ◽  
Darius Jakimavičius ◽  
...  

Aquatic ecosystems are particularly vulnerable to anthropogenic activity and climate change. The changes in flow regimes in Lithuanian lowland rivers due to the operation of hydropower plants (HPPs) and the impact of altered flow on some fish species have already been studied. The impact of climate change on future natural river runoff and the structure of fish assemblages was also investigated. However, it is still unknown how the combined effect of climate change and flow regulation related to hydropower generation may affect fish assemblages in the downstream river reaches below the Lithuanian HPPs. In this study, the physical habitat modelling system MesoHABSIM was used to simulate spatial and temporal changes in aquatic habitats availability for different fish species under the influence of HPP at different climate change scenarios. Changes in the available habitat were assessed for common fish species in four HPP-affected rivers representing different hydrological regions of Lithuania. The modelling results showed that the operation of HPP under climate change conditions in most rivers could be beneficial for small benthic fish species such as gudgeon Gobio gobio and stone loach Barbatula barbatula. Meanwhile, for larger fish species (e.g., chub Squalius cephalus and vimba Vimba vimba) the alteration in the temporal availability of suitable habitat was relatively higher.


Author(s):  
Yuriy Yushchenko ◽  
Olha Palanychko ◽  
Mykola Pasichnyk ◽  
Oleksandr Zakrevskyi

Research of precipitation, water balance of river basins, and the impact of precipitation on river runoff remain relevant in the context of global and regional climate change. Nowadays, many scientific research all over the world are devoted to the research of the problem of river runoff change under the influence of climatic factors. This kind of research has been developing strongly in Ukraine in recent decades. In particular, they concern the rivers of the Ukrainian Carpathians. The basin of the river Putyla to the line of the village of Putyla has an area of 181 km2. It is located in the south-eastern part of the Carpathian and characterized by a significant influence of warm rains on the formation of water runoff. The average annual runoff is characterized by rather complex patterns of change both in time and space. There are periodic, cyclical and unidirectional changes that occur under the influence of a complex system of factors. Climate is a major factor of the water change. Thus, the research of the average runoff of the Putila River has different aspects.To determine the effect of precipitation on river runoff, the method of comparing difference-integral curves of annual runoff and precipitation, as well as water-balance methods are used. Long-term changes and intra-annual distribution of precipitation, in particular rainfall, according to the observations of the meteorological station Selyatyn were analyzed. We constructed a differential integrated curve of modular coefficients of the average annual precipitation in the Putil district. It clearly reflects the cyclical changes in precipitation. Long-term changes and intra-annual distribution of water runoff in the Putyla River also were analyzed. During the observation period, periods of long-term fluctuations of the average annual precipitation were revealed. The average annual rainfall is 842.9 mm. The annual course is stable, ie the greatest amount of precipitation falls in the summer, when there are intense thunderstorms and showers, the least – in winter. Based on the data of hydrological observations, the average long-term value of water consumption according to GP Putila is 2.47 m3/s. We calculated the coefficient of variability (variation). The coefficient of variation for average costs is 0.21 (21%), and for precipitation – 0.7 (7%). The connection between precipitation and runoff was established. We have built a comprehensive schedule of annual distribution of precipitation and costs of the Putyla River for 2010. You can see that in the spring due to snowmelt there is an influx of water and there is a spring flood. It is known that 2010 in Putilsky district was full of water. The reduction of water consumption in the Putyla River in the cold period of the year with a decrease in precipitation is also observed. Graph of the dependence of the runoff of the Putyla River on precipitation in the village of Selyatyn showed a fairly clear relationship between the variable values of runoff and precipitation (the coefficient of variation is 0,66). The feeding structure of the Putyla River is mixed. The main share is occupied by rain, less - snow and groundwater. Key words: climate change, precipitation, runoff, rivers, long-term changes in runoff, intra-annual distribution of precipitation and runoff, Putyla river.


2021 ◽  
Vol 925 (1) ◽  
pp. 012013
Author(s):  
I P Anwar ◽  
M R Putri ◽  
A Tarya ◽  
I Mandang

Abstract Balikpapan Bay is enclosed water influenced by freshwater from river runoff and saline water from Makassar Strait. The exchange of water mass was examined by 3D numerical model simulation-Hamburg Shelf Ocean Model (HAMSOM) with horizontal resolutions approx. 150 m and 10 vertical layers applied in Balikpapan Bay. The thirteen tidal components, daily river runoff, atmospheric forcing, subsurface temperature, and Salinity in 3D used for model input. The tidal elevation from Geospatial Information Agency (BIG) model fits with this result from 01/03/2020 to 31/03/2020. It has coefficient correlation 0,99 with a significant level of 95% and Root Mean Square Error (RMSE) is 0,1 m. The volume and salt transport in the mouth (Line-A) and middle (Line-B) of bay was examined. The maximum transport in Line-A during spring (neap) high to low tide and low to high tide is −18364.72 m3/s (−1717.57 m3/s) and −17532.27 m3/s (4258.86 m3/s) for volume. Then, 531,947,898.90 kg.psu./s (−45,127,135.38 kg.psu./s) and −536,410,944.50 kg.psu./s (140,700,437.97 kg.psu./s) for salinity. Positive (negative) of water transport is inflow (outflow) to Balikpapan Bay. The net transport in a day during the spring (neap) is −832.45 m3/s (5976.43 m3/s) for volume and −4,463,045.58 kg.psu./s (185,827,573.35 kg.pau./s) for salt. The vertical structure of net volume and salt transport bot in Line-A and Line-B shows the water goes to outer bay in surface and inner bay in subsurface. While in the spring tide the surface deeper than neap tide. It indicated that water mass exchange dominantly influenced by river in surface and tidal in subsurface. It also shows that water mass from inner bay more easy flushing during spring tide than neap tide and vice versa


2021 ◽  
Vol 12 (3-2021) ◽  
pp. 19-28
Author(s):  
A.S. Bulavina ◽  

Modelling of the Ob river runoff under changing climatic conditions has been carried out. Three scenarios of climate change in the Ob river catchment area in 2021–2050 are proposed. It is shown that if the trends of changes in meteorological characteristics that began in the 70s of the XX century continue, or if they change synchronously, the Ob river discharge will not undergo significant directional changes.


2021 ◽  
Vol 36 (2) ◽  
pp. 252-256
Author(s):  
Khikmatov Fazliddin ◽  
Ganiev Shahob ◽  
Ziyaev Rahmat

The article deals with the issues of statistical assessment of the variability of the runoff of small rivers in the Middle Zeravshan basin. For this purpose, the average monthly and annual water discharges were used, taken into account at 11 hydrological stations located on small rivers and water resources in the Middle Zeravshan basin. Calculations to estimate the coefficient of variability of river runoff were carried out for two periods: the first calculation period includes the base climatic period (1961-1990), and the second calculation period includes 1991-2018. Based on the analysis of the results obtained, an increase in the value of the coefficient of variation (Cv) in the second calculation period relative to the first calculation period was revealed.


2021 ◽  
Vol 867 (1) ◽  
pp. 012006
Author(s):  
E V Gaidukova ◽  
V G Margaryan ◽  
N V Myakisheva ◽  
M R Pavlov ◽  
VA Khaustov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document