scholarly journals Analysis of Multipolar Linear Paul Traps for Ion–Atom Ultracold Collision Experiments

Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 38
Author(s):  
M. Niranjan ◽  
Anand Prakash ◽  
S. A. Rangwala

We evaluate the performance of multipole, linear Paul traps for the purpose of studying cold ion–atom collisions. A combination of numerical simulations and analysis based on the virial theorem is used to draw conclusions on the differences that result, by considering the trapping details of several multipole trap types. Starting with an analysis of how a low energy collision takes place between a fully compensated, ultracold trapped ion and an stationary atom, we show that a higher order multipole trap is, in principle, advantageous in terms of collisional heating. The virial analysis of multipole traps then follows, along with the computation of trapped ion trajectories in the quadrupole, hexapole, octopole and do-decapole radio frequency traps. A detailed analysis of the motion of trapped ions as a function of the amplitude, phase and stability of the ion’s motion is used to evaluate the experimental prospects for such traps. The present analysis has the virtue of providing definitive answers for the merits of the various configurations, using first principles.

Author(s):  
Volker Badock ◽  
Manfred Raida ◽  
Knut Adermann ◽  
Wolf-Georg Forssmann ◽  
Michael Schrader

2013 ◽  
Vol 31 (9) ◽  
pp. 1569-1578 ◽  
Author(s):  
M. Yamauchi ◽  
I. Dandouras ◽  
H. Rème ◽  
R. Lundin ◽  
L. M. Kistler

Abstract. Using Cluster Ion Spectrometry (CIS) data from the spacecraft-4 perigee traversals during the 2001–2006 period (nearly 500 traversals after removing those that are highly contaminated by radiation belt particles), we statistically examined the local time distribution of structured trapped ions at sub- to few-keV range as well as inbound–outbound differences of these ion signatures in intensities and energy–latitude dispersion directions. Since the Cluster orbit during this period was almost constant and approximately north–south symmetric at nearly constant local time near the perigee, inbound–outbound differences are attributed to temporal developments in a 1–2 h timescale. Three types of structured ions at sub- to few keV range that are commonly found in the inner magnetosphere are examined: – Energy–latitude dispersed structured ions at less than a few keV, – Short-lived dispersionless ion stripes at wide energy range extending 0.1–10 keV, – Short-lived low-energy ion bursts at less than a few hundred eV. The statistics revealed that the wedge-like dispersed ions are most often observed in the dawn sector (60% of traversals), and a large portion of them show significant enhancement during the traversals at all local times. The short-lived ion stripes are predominantly found near midnight, where most stripes are significantly enhanced during the traversals and are associated with substorm activities with geomagnetic AL < −300 nT. The low-energy bursts are observed at all local times and under all geomagnetic conditions, with moderate peak of the occurrence rate in the afternoon sector. A large portion of them again show significant enhancement or decay during the traversals.


2017 ◽  
Vol 50 (6) ◽  
pp. 065304 ◽  
Author(s):  
XiZhi Shi ◽  
ChaoYu He ◽  
Tao OuYang ◽  
ChunXiao Zhang ◽  
Chao Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document