scholarly journals Extinction Risk Assessment of the Greek Endemic Flora

Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 195 ◽  
Author(s):  
Konstantinos Kougioumoutzis ◽  
Ioannis P. Kokkoris ◽  
Maria Panitsa ◽  
Arne Strid ◽  
Panayotis Dimopoulos

Human-induced biodiversity decline has been on the rise for the past 250 years, due to various causes. What is equally troubling, is that we are unaware which plants are threatened and where they occur. Thus, we are far from reaching Aichi Biodiversity Target 2, i.e., assessing the extinction risk of most species. To that end, based on an extensive occurrence dataset, we performed an extinction risk assessment according to the IUCN Criteria A and B for all the endemic plant taxa occurring in Greece, one of the most biodiverse countries in Europe, in a phylogenetically-informed framework and identified the areas needing conservation prioritization. Several of the Greek endemics are threatened with extinction and fourteen endemics need to be prioritized, as they are evolutionary distinct and globally endangered. Mt. Gramos is identified as the most important conservation hotspot in Greece. However, a significant portion of the identified conservation hotspots is not included in any designated Greek protected area, meaning that the Greek protected areas network might need to be at least partially redesigned. In the Anthropocene era, where climate and land-use change are projected to alter biodiversity patterns and may force many species to extinction, our assessment provides the baseline for future conservation research, ecosystem services maintenance, and might prove crucial for the timely, systematic and effective aversion of plant extinctions in Greece.

2020 ◽  
Vol 68 (6) ◽  
pp. 466
Author(s):  
Matthew Alfonzetti ◽  
Malin C. Rivers ◽  
Tony D. Auld ◽  
Tom Le Breton ◽  
Tim Cooney ◽  
...  

Research on species recovery, reintroduction, and conservation disproportionally focusses on birds and mammals. Typically, less attention is given to hyper-diverse but ecologically important groups such as plants and invertebrates. In this study, we focussed on a continent with one of the world’s highest proportions of endemic plant species (Australia) comparing the number of extinction risk assessments relative to birds and mammals. Specifically, we generated a checklist of Australian endemic vascular plants and used three resources which differ in styles and scope to collate information on how many have an extinction risk assessment – the ThreatSearch database, International Union for Conservation of Nature (IUCN) Red List, and Environment Protection and Biodiversity Conservation Act 1999, (EPBC Act). Between 76 and 93% of endemic Australian plants examined lack an extinction risk assessment based on data from our three sources. We also compared the proportions of endemic plants assessed relative to birds and mammals. Of all endemic plant taxa examined, only 6.8% have been assessed under the EPBC Act, compared with 9.4% of birds and 28.9% of mammals. Similarly, only 8.8% of endemic plants have been assessed for the IUCN Red List, compared with 29.1% of birds and 61.1% of mammals, whereas all birds and mammals have been examined in National Action Plans. This represents a significant underestimation of the actual proportion of Australian endemic plants that are likely to satisfy extinction-risk criteria for listing as threatened. This shortfall in risk assessments for plants is a matter of international significance for conservation given Australia’s high rate of plant endemism. A change in policy and approach to assessing extinction risk is needed to ensure adequate assessment effort across different taxonomic groups.


2014 ◽  
Vol 66 (3) ◽  
pp. 963-967
Author(s):  
You-Hua Chen

The relationships between areal sizes of high, intermediate, low, and total sum of habitats with low, intermediate and high suitability habitat ranges, and the International Union for Conservation of Nature (IUCN) threatened status of global terrestrial mammals were studied. Polyserial correlation analysis showed that all types of areal size closely and positively correlated with IUCN categories of threatened species. The results indicate that area-based extinction risk assessment is feasible and reliable in species? conservation prioritization. Furthermore, the partial polyserial correlation test indicates that significant correlations between the IUCN threatened status of species and range sizes of high, intermediate and low suitability habitats are not influenced by the polyserial correlation between IUCN threatened status and total suitability habitat range size. Thus, the prediction of species? extinction risks can be accurately fulfilled by evaluating the areal size of any one of total, high, intermediate or low suitability ranges. The present study implies that if the area size information of a totally suitable range is not available for species? extinction risk assessment, the usage of areal sizes from any parts of suitable habitats (high, intermediate or low) are effective surrogates.


2015 ◽  
Vol 30 (2) ◽  
pp. 362-370 ◽  
Author(s):  
Lucas N. Joppa ◽  
Stuart H. M. Butchart ◽  
Michael Hoffmann ◽  
Steve P. Bachman ◽  
H. Resit Akçakaya ◽  
...  

2011 ◽  
Vol 144 (7) ◽  
pp. 1961-1971 ◽  
Author(s):  
Frederick T. Short ◽  
Beth Polidoro ◽  
Suzanne R. Livingstone ◽  
Kent E. Carpenter ◽  
Salomão Bandeira ◽  
...  

2021 ◽  
Author(s):  
Takayuki Shiono ◽  
Yasuhiro Kubota ◽  
Buntarou Kusumoto

To reframe the imperfect review processes of nation-scale actions on area-based conservation through protected area (PA) networks, we first created novel infrastructure to visualize nation-level biodiversity information in Japan. We then assessed the performance of the existing PA network relative to land exploitation pressure and evaluated conservation effectiveness of PA expansion for the post-2020 Global Biodiversity Framework. The Zonation algorithm was used to spatially prioritize conservation areas to minimize biodiversity loss and the extinction risk for 8,500 Japanese vascular plant and vertebrate species under constraints of the existing PA network and land use. The spatial pattern of the identified priority areas, which were considered candidate areas for expansion of the current PA network, was influenced by land-use types according to the mask layers of non-PAs, and low-, middle-, and high-ranked PAs. The current PA network reduced the aggregate extinction risk of multiple species by 36.6%. Indeed, the percentage of built-up areas in the existing PAs was in general smaller than that in the areas surrounding PAs. Notably, high-ranked PAs fully restrained built-up pressure (0.037% per 10 years), whereas low-ranked PAs in the national park and wild-life protection areas did not (1.845% per 10 years). Conservation effects were predicted to substantially improve by expansion of high-ranked (legally strict) PAs into remote non-PAs without population/socio-economic activities, or expansion of medium-ranked PAs into agriculture forestry satoyama and urban areas. A 30% land conservation target was predicted to decrease extinction risk by 74.1% when PA expansion was implemented across remote areas, satoyama, and urban areas; moreover, PA connectivity almost doubled compared with the existing PA network. In contrast, a conventional scenario showed that placing national parks in state-owned and non-populated areas would reduce extinction risk by only 4.0%. The conservation prioritization analyses demonstrated an effectiveness of using a comprehensive conservation approach that reconciles land-sparing protection and land-sharing conservation in other effective area-based conservation measures (OECM) in satoyama and urban green spaces. Our results revealed that complementary inclusion of various PAs interventions related to their governance and land-use planning plays a critical role in effectively preventing biodiversity loss and makes it more feasible to achieve ambitious conservation targets.


2015 ◽  
Vol 29 (3) ◽  
pp. 865-876 ◽  
Author(s):  
Claire A. Runge ◽  
Ayesha Tulloch ◽  
Edd Hammill ◽  
Hugh P. Possingham ◽  
Richard A. Fuller

Sign in / Sign up

Export Citation Format

Share Document