scholarly journals Standard Non-Personalized Electric Field Modeling of Twenty Typical tDCS Electrode Configurations via the Computational Finite Element Method: Contributions and Limitations of Two Different Approaches

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1230
Author(s):  
Andrés Molero-Chamizo ◽  
Michael A. Nitsche ◽  
Carolina Gutiérrez Lérida ◽  
Ángeles Salas Sánchez ◽  
Raquel Martín Riquel ◽  
...  

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation procedure to modulate cortical excitability and related brain functions. tDCS can effectively alter multiple brain functions in healthy humans and is suggested as a therapeutic tool in several neurological and psychiatric diseases. However, variability of results is an important limitation of this method. This variability may be due to multiple factors, including age, head and brain anatomy (including skull, skin, CSF and meninges), cognitive reserve and baseline performance level, specific task demands, as well as comorbidities in clinical settings. Different electrode montages are a further source of variability between tDCS studies. A procedure to estimate the electric field generated by specific tDCS electrode configurations, which can be helpful to adapt stimulation protocols, is the computational finite element method. This approach is useful to provide a priori modeling of the current spread and electric field intensity that will be generated according to the implemented electrode montage. Here, we present standard, non-personalized model-based electric field simulations for motor, dorsolateral prefrontal, and posterior parietal cortex stimulation according to twenty typical tDCS electrode configurations using two different current flow modeling software packages. The resulting simulated maximum intensity of the electric field, focality, and current spread were similar, but not identical, between models. The advantages and limitations of both mathematical simulations of the electric field are presented and discussed systematically, including aspects that, at present, prevent more widespread application of respective simulation approaches in the field of non-invasive brain stimulation.

2020 ◽  
Vol 12 ◽  
Author(s):  
Jue Wang ◽  
Tao Ma ◽  
Xu Wang ◽  
Fang Wang

Background: : A THz Plasmonic Waveguide Based on Graphene Coated Bow-tie Nanowire (TPW-GCBN) is proposed. The waveguide characteristics are investigated by using Finite Element Method (FEM). The influence of the geometric parameters on propagation constants, electric field distributions, effective mode areas, and propagation lengths are obtained numerically. The performance tunability of TPW-GCBN is also studied by adjusting the Fermi energy (FE). The simulation results show that the TPW-GCBN has better mode confinement ability. The TPW-GCBN has potential applications in high density integration of photonic circuit for the future tunable micro nano optoelectronic devices. Surface plasmon polaritons (SPPs) based waveguides have been widely used to enhance the local electric fields. It also has the capability of manipulating electromagnetic fields on the deep-subwavelength. Objective:: The waveguide characteristics of a THz Plasmonic Waveguide Based on Graphene Coated Bow-tie Nanowire (TPW-GCBN) should be investigated. The tunability of TPW-GCBN should be studied by adjusting the chemical potential (FE) which can be changed by the voltage. Method: : The mode analysis and parameter sweep in Finite Element Method (FEM) were used to simulate the TPW-GCBN for analyzing effective refractive index (neff), electric field distributions, normalized mode areas (Am), propagation length (Lp) and figure of merit (FoM). Results: : At 5 THz, Aeff of λ2/14812, Lp of ~2 μm and FoM of 25 can be achieved. The simulation results show that the TPW-GBN has good mode confinement ability and flexible tunability. Conclusion:: The TPW-GBN provides a new freedom to manipulate the graphene surface plasmons, and leads to new applications in high density integration of photonic circuit for tunable integrated optical devices.


2011 ◽  
Vol 695 ◽  
pp. 513-516
Author(s):  
Jie Ren ◽  
Li Fu ◽  
Ling Bao Meng

The CdZnTe (CZT) devices with various screening depth in dimensions 3×3×6mm3 were fabricated. The influence of Ring length (screening depth) and length of crystal on the electric field distribution in CZT devices has been explored by finite element method. The results indicated that ring length (screening depth) plays an important role on the detecting performance of CZT Frisch-ring devices. Longer screening depth gives rise to an electric field which is compressed more greatly. Measured spectra indicated that extreme compressed electric field could reduce detecting resolution. A FWHM energy resolution of approximately 3.71% at 662 keV was obtained for a device with dimensions 3×3×6mm3 and 4.8mm screening depth.


Sign in / Sign up

Export Citation Format

Share Document