scholarly journals Evidence for Two Modes of Binding of the Negative Allosteric Modulator SB269,652 to the Dopamine D2 Receptor

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 22
Author(s):  
Richard Ågren ◽  
Kristoffer Sahlholm

SB269,652 has been described as the first negative allosteric modulator (NAM) of the dopamine D2 receptor (D2R), however, the binding mode and allosteric mechanism of action of this ligand remain incompletely understood. SB269,652 comprises an orthosteric, primary pharmacophore and a secondary (or allosteric) pharmacophore joined by a hydrophilic cyclohexyl linker and is known to form corresponding interactions with the orthosteric binding site (OBS) and the secondary binding pocket (SBP) in the D2R. Here, we observed a surprisingly low potency of SB269,652 to negatively modulate the D2R-mediated activation of G protein-coupled inward-rectifier potassium channels (GIRK) and decided to perform a more detailed investigation of the interaction between dopamine and SB269,652. The results indicated that the SB269,652 inhibitory potency is increased 6.6-fold upon ligand pre-incubation, compared to the simultaneous co-application with dopamine. Mutagenesis experiments implicated both S193 in the OBS and E95 in the SBP in the effect of pre-application. The present findings extend previous knowledge about how SB269,652 competes with dopamine at the D2R and may be useful for the development of novel D2R ligands, such as antipsychotic drug candidates.

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Christopher J. Draper-Joyce ◽  
Ravi Kumar Verma ◽  
Mayako Michino ◽  
Jeremy Shonberg ◽  
Anitha Kopinathan ◽  
...  

2015 ◽  
Vol 58 (17) ◽  
pp. 6819-6843 ◽  
Author(s):  
Shailesh N. Mistry ◽  
Jeremy Shonberg ◽  
Christopher J. Draper-Joyce ◽  
Carmen Klein Herenbrink ◽  
Mayako Michino ◽  
...  

2018 ◽  
Vol 62 (1) ◽  
pp. 174-206 ◽  
Author(s):  
Tim J. Fyfe ◽  
Barbara Zarzycka ◽  
Herman D. Lim ◽  
Barrie Kellam ◽  
Shailesh N. Mistry ◽  
...  

2020 ◽  
Vol 13 ◽  
Author(s):  
Ritesh Daya ◽  
Joella Ho ◽  
Sharon Thomson ◽  
Jayant Bhandari ◽  
Ram K. Mishra

Background: Allosteric modulators of G-protein coupled receptors regulate receptor activity by binding to sites other than the active site and have emerged as a new and highly desirable class of drugs. PAOPA (3(R)-[(2(S)- pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide), a peptidomimetic analog of Prolyl-Leucyl-Glycinamide, is a potent dopamine D2 receptor allosteric modulator. PAOPA has shown therapeutic effects in pre-clinical models of schizophrenia and extrapyramidal dysfunction. Objective: in this study, we sought to examine the biomolecular underpinnings of PAOPA‘s therapeutic outcomes in preclinical models of schizophrenia. Method: Following sub-chronic (daily for 7 days) administration of PAOPA, we assessed levels of dopamine D2 receptors, receptor kinases (GRK2 (G protein-coupled receptor kinase 2) and Arrestin-3), and phosphorylated mitogenactivated protein kinase (MAPKs), namely, extracellular signal-regulated kinases (ERK1/2) in the hippocampus, medial pre-frontal cortex, nucleus accumbens, pre-frontal cortex, and dorsal striatum via protein quantification. Results: Following 7 days of daily PAOPA treatment, we observed decreased GRK2 and increased dopamine D2 receptor expression in the dorsal striatum. These findings potentially underscore PAOPA’s therapeutic mechanism of action for the positive-like symptoms of schizophrenia in pre-clinical animal models. Additionally, we observed a decline in GRK2 in the hippocampus and an increase in phosphorylated ERK1 in the pre-frontal cortex, suggestive of a role for PAOPA in treating cognitive and/or affective dysfunction in pre-clinical models. Conclusion: While further studies are required to elucidate PAOPA’s mechanism of action, this study builds on prior investigations and develops an early framework to describe the therapeutic mechanism of action of PAOPA.


2020 ◽  
Vol 21 (2) ◽  
pp. 436 ◽  
Author(s):  
Justyna Żuk ◽  
Damian Bartuzi ◽  
Dariusz Matosiuk ◽  
Agnieszka A. Kaczor

The dopamine D2 receptor belongs to rhodopsin-like G protein-coupled receptors (GPCRs) and it is an important molecular target for the treatment of many disorders, including schizophrenia and Parkinson’s disease. Here, computational methods were used to construct the full models of the dopamine D2 receptor short (D2S) and long (D2L) isoforms (differing with 29 amino acids insertion in the third intracellular loop, ICL3) and to study their coupling with Gi1 and Gi2 proteins. It was found that the D2L isoform preferentially couples with the Gi2 protein and D2S isoform with the Gi1 protein, which is in accordance with experimental data. Our findings give mechanistic insight into the interplay between isoforms of dopamine D2 receptors and Gi proteins subtypes, which is important to understand signaling by these receptors and their mediation by pharmaceuticals, in particular psychotic and antipsychotic agents.


2019 ◽  
Author(s):  
J. Robert Lane ◽  
Ara M. Abramyan ◽  
Ravi Kumar Verma ◽  
Herman D. Lim ◽  
Jonathan A. Javitch ◽  
...  

ABSTRACTUnderstanding how crystal structures reflect the range of possible G protein-coupled receptor (GPCR) states is critical for rational drug discovery (RDD). Combining computational simulations with mutagenesis and binding studies, we find that the structure of the dopamine D2 receptor (D2R)/risperidone complex captures an inactive receptor conformation that accommodates some but not all antagonist scaffolds. Indeed, we find that eticlopride binds D2R in a configuration very similar to that seen in the D3R structure, in a pose that is incompatible with the D2R/risperidone structure. Moreover, our simulations reveal that extracellular loops 1 and 2 (EL1 and EL2) are highly dynamic, with spontaneous transitions of EL2 from the helical conformation in the D2R/risperidone structure to an extended conformation similar to that in the D3R/eticlopride structure. Our results highlight previously unappreciated conformational diversity and dynamics in the inactive state of a GPCR with potential functional implications. These findings are also of paramount importance for RDD as limiting a virtual screen to one state will miss relevant ligands.


Sign in / Sign up

Export Citation Format

Share Document