intracellular loop
Recently Published Documents


TOTAL DOCUMENTS

503
(FIVE YEARS 73)

H-INDEX

53
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Ian Winfield ◽  
Kerry Barkan ◽  
Sarah Routledge ◽  
Nathan J. Robertson ◽  
Matthew Harris ◽  
...  

The first intracellular loop (ICL1) of G protein-coupled receptors (GPCRs) has received little attention, although there is evidence that, with the 8th helix (H8), it is involved in early conformational changes following receptor activation as well as contacting the G protein β subunit. In class B1 GPCRs, the distal part of ICL1 contains a conserved R12.48KLRCxR2.46b motif that extends into the base of the second transmembrane helix; this is weakly conserved as a [R/H]12.48KL[R/H] motif in class A GPCRs. In the current study, the role of ICL1 and H8 in signaling through cAMP, iCa2+ and ERK1/2 has been examined in two class B1 GPCRs, using mutagenesis and molecular dynamics. Mutations throughout ICL1 can either enhance or disrupt cAMP production by CGRP at the CGRP receptor. Alanine mutagenesis identified subtle differences with regard elevation of iCa2+, with the distal end of the loop being particularly sensitive. ERK1/2 activation displayed little sensitivity to ICL1 mutation. A broadly similar pattern was observed with the glucagon receptor, although there were differences in significance of individual residues. Extending the study revealed that at the CRF1 receptor, an insertion in ICL1 switched signaling bias between iCa2+ and cAMP. Molecular dynamics suggested that changes in ICL1 altered the conformation of ICL2 and the H8/TM7 junction (ICL4). For H8, alanine mutagenesis showed the importance of E3908.49b for all three signal transduction pathways, for the CGRP receptor, but mutations of other residues largely just altered ERK1/2 activation. Thus, ICL1 may modulate GPCR bias via interactions with ICL2, ICL4 and the Gβ subunit.


2021 ◽  
Author(s):  
Samsuzzoha Mondal ◽  
Samuel Botterbusch ◽  
Karthik Narayan ◽  
Imania Powers ◽  
Jason Zheng ◽  
...  

Endocytosis of transmembrane receptors initiates via molecular interactions between the activated receptor and the endocytic machinery. A specific group of receptors, including the β1-adrenergic receptor (β1-AR), is internalized through a non-clathrin pathway known as Fast Endophilin Mediated Endocytosis (FEME). A key question is: how does the endocytic machinery assemble and how is it modulated by activated receptors during FEME. Here we show that endophilin, a major regulator of FEME, undergoes a phase transition into liquid-like condensates, which facilitates the formation of multi-protein assemblies by enabling the phase partitioning of endophilin binding proteins. The phase transition can be triggered by specific multivalent binding partners of endophilin in the FEME pathway such as the third intracellular loop (TIL) of the β1-AR, and the proline-rich-motifs of lamellipodin (LPD-PRMs). Other endocytic accessory proteins can either partition into, or target interfacial regions of, these condensate droplets. On the membrane, TIL promotes protein clustering in the presence of endophilin and LPD-PRMs. Our results demonstrate how the multivalent interactions between endophilin, LPD-PRMs and TIL regulate protein assembly formation on the membrane, providing mechanistic insights into the priming and initiation steps of FEME.


Author(s):  
Kristyna Pluhackova ◽  
Florian M. Wilhelm ◽  
Daniel J. Müller

G protein-coupled receptors (GPCRs) are the largest class of human membrane proteins that bind extracellular ligands at their orthosteric binding pocket to transmit signals to the cell interior. Ligand binding evokes conformational changes in GPCRs that trigger the binding of intracellular interaction partners (G proteins, G protein kinases, and arrestins), which initiate diverse cellular responses. It has become increasingly evident that the preference of a GPCR for a certain intracellular interaction partner is modulated by a diverse range of factors, e.g., ligands or lipids embedding the transmembrane receptor. Here, by means of molecular dynamics simulations of the β2-adrenergic receptor and β-arrestin2, we study how membrane lipids and receptor phosphorylation regulate GPCR-arrestin complex conformation and dynamics. We find that phosphorylation drives the receptor’s intracellular loop 3 (ICL3) away from a native negatively charged membrane surface to interact with arrestin. If the receptor is embedded in a neutral membrane, the phosphorylated ICL3 attaches to the membrane surface, which widely opens the receptor core. This opening, which is similar to the opening in the G protein-bound state, weakens the binding of arrestin. The loss of binding specificity is manifested by shallower arrestin insertion into the receptor core and higher dynamics of the receptor-arrestin complex. Our results show that receptor phosphorylation and the local membrane composition cooperatively fine-tune GPCR-mediated signal transduction. Moreover, the results suggest that deeper understanding of complex GPCR regulation mechanisms is necessary to discover novel pathways of pharmacological intervention.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Chihiro Nakamoto ◽  
Yuhei Goto ◽  
Yoko Tomizawa ◽  
Yuko Fukata ◽  
Masaki Fukata ◽  
...  

AbstractDopamine (DA) and norepinephrine (NE) are pivotal neuromodulators that regulate a broad range of brain functions, often in concert. Despite their physiological importance, untangling the relationship between DA and NE in the fine control of output function is currently challenging, primarily due to a lack of techniques to allow the observation of spatiotemporal dynamics with sufficiently high selectivity. Although genetically encoded fluorescent biosensors have been developed to detect DA, their poor selectivity prevents distinguishing DA from NE. Here, we report the development of a red fluorescent genetically encoded GPCR (G protein-coupled receptor)-activation reporter for DA termed ‘R-GenGAR-DA’. More specifically, a circular permutated red fluorescent protein (cpmApple) was replaced by the third intracellular loop of human DA receptor D1 (DRD1) followed by the screening of mutants within the linkers between DRD1 and cpmApple. We developed two variants: R-GenGAR-DA1.1, which brightened following DA stimulation, and R-GenGAR-DA1.2, which dimmed. R-GenGAR-DA1.2 demonstrated a reasonable dynamic range (ΔF/F0 = − 43%), DA affinity (EC50 = 0.92 µM) and high selectivity for DA over NE (66-fold) in HeLa cells. Taking advantage of the high selectivity of R-GenGAR-DA1.2, we monitored DA in presence of NE using dual-color fluorescence live imaging, combined with the green-NE biosensor GRABNE1m, which has high selectivity for NE over DA (> 350-fold) in HeLa cells and hippocampal neurons grown from primary culture. Thus, this is a first step toward the multiplex imaging of these neurotransmitters in, for example, freely moving animals, which will provide new opportunities to advance our understanding of the high spatiotemporal dynamics of DA and NE in normal and abnormal brain function.


2021 ◽  
Vol 14 ◽  
Author(s):  
Braulio Muñoz ◽  
Trinidad Mariqueo ◽  
Pablo Murath ◽  
Christian Peters ◽  
Gonzalo E. Yevenes ◽  
...  

Alpha1-containing glycine receptors (GlyRs) are major mediators of synaptic inhibition in the spinal cord and brain stem. Recent studies reported the presence of α2-containing GlyRs in other brain regions, such as nucleus accumbens and cerebral cortex. GlyR activation decreases neuronal excitability associated with sensorial information, motor control, and respiratory functions; all of which are significantly altered during ethanol intoxication. We evaluated the role of β GlyR subunits and of two basic amino acid residues, K389 and R390, located in the large intracellular loop (IL) of the α2 GlyR subunit, which are important for binding and functional modulation by Gβγ, the dimer of the trimeric G protein conformation, using HEK-293 transfected cells combined with patch clamp electrophysiology. We demonstrate a new modulatory role of the β subunit on ethanol sensitivity of α2 subunits. Specifically, we found a differential allosteric modulation in homomeric α2 GlyRs compared with the α2β heteromeric conformation. Indeed, while α2 was insensitive, α2β GlyRs were substantially potentiated by ethanol, GTP-γ-S, propofol, Zn2+ and trichloroethanol. Furthermore, a Gβγ scavenger (ct-GRK2) selectively attenuated the effects of ethanol on recombinant α2β GlyRs. Mutations in an α2 GlyR co-expressed with the β subunit (α2AAβ) specifically blocked ethanol sensitivity, but not propofol potentiation. These results show a selective mechanism for low ethanol concentration effects on homomeric and heteromeric conformations of α2 GlyRs and provide a new mechanism for ethanol pharmacology, which is relevant to upper brain regions where α2 GlyRs are abundantly expressed.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 868-868
Author(s):  
Jaewoong Lee ◽  
Mark E. Robinson ◽  
Ning Ma ◽  
Teresa Sadras ◽  
Kadriye Nehir Cosgun ◽  
...  

Abstract Background: Within seconds of antigen-encounter, B-cell receptor (BCR) signaling induces dramatic changes of cell membrane lipid composition, including >40-fold increases of local PIP3-concentrations within lipid rafts. While several structural elements, including pleckstrin homology (PH) domains have been identified as PIP3-binding proteins, the underlying mechanisms that amplify BCR-signaling to assemble large signaling complexes within lipid rafts within 15 to 30 seconds, remained elusive. To understand the mechanistic and biophysical requirements for PIP3 accumulation during normal B-cell activation and acute oncogenic transformation, we identified PIP3-interacting proteins by cell-surface proteomic analyses. Results: In addition to proteins known to bind PIP3 with their PH-domains, we identified the short 133 aa protein IFITM3 (interferon-inducible transmembrane protein 3) as a top-ranking PIP3 scaffold. This was unexpected because IFITM3 was previously identified as endosomal protein that blocks viral infection by stiffening endosomal membranes to firmly contain viral cargo. Previous studies revealed that polymorphisms that lead to the expression of truncated IFITM3 are associated with increased susceptibility to viral infections, including SARS-CoV2. Among known cell membrane lipids, PIP3 has the highest negative charge. Instead of a PH-domain, IFITM3 laterally sequestered PIP3 through electrostatic interactions with two basic lysine residues (K83 and K104) located at the membrane-solution interface. Together with three other basic lysine and arginine residues K83 and K104 form a conserved intracellular loop (CIL), which enable IFITM3 to efficiently capture two PIP3 molecules. Bivalent PIP3-binding of the IFITM3-CIL enables a crosslinking mechanism that results in dramatic amplification of B-cell activation signals and clustering of large signaling complexes within lipid rafts. In normal resting B-cells, Ifitm3 was minimally expressed and mainly localized in endosomes. However, B-cell activation and oncogenic kinases induced phosphorylation at IFITM3-Y20, resulting in translocation of IFITM3 from endosomes and massive accumulation at the cell surface. Ifitm3ˉ /ˉ naïve B-cells developed at normal numbers, however, activation by antigen encounter was compromised. In Ifitm3ˉ /ˉ B-cells, lipid rafts were depleted of PIP3, resulting in defective expression of >60 lipid raft-associated surface receptors and impaired PI3K-signaling. Ifitm3ˉ /ˉ B-cells were unable to undergo affinity maturation and di not contribute to germinal center formation upon immunization. Analyses of gene expression and clinical outcome data from patients in six clinical cohorts for pediatric and adult B-ALL, mantle cell lymphoma, CLL and DLBCL, we consistently identified IFITM3 as a top-ranking predictor of poor clinical outcome. Inducible activation of BCR-ABL1 and NRAS G12D rapidly induced development of B-ALL but failed to transform and initiate B-ALL from Ifitm3ˉ /ˉ B-cell precursors. Conversely, the phospho-mimetic IFITM3-Y20E mutation, mimicking phosphorylation of the IFITM3 N-terminus at Y20 induced constitutive membrane localization of IFITM3, spontaneous aggregation of large oncogenic signaling complexes and readily initiated transformation in a genetic model of pre-malignant B-cells. Conclusions: We conclude that phosphorylation of IFITM3 upon B-cell activation induces a dynamic switch from antiviral effector functions in endosomes to oncogenic signal-amplification at the cell-surface. IFITM3-dependent amplification of PI3K-signaling is critical to enable rapid expansion of activated B-cells. In addition, multiple oncogenes depend on IFITM3 to assemble PIP3-dependent signaling complexes and amplify PI3K-signaling for malignant transformation and initiation of B-lymphoid leukemia and lymphoma. Figure 1 Figure 1. Disclosures Weinstock: SecuraBio: Consultancy; ASELL: Consultancy; Bantam: Consultancy; Abcuro: Research Funding; Verastem: Research Funding; Daiichi Sankyo: Consultancy, Research Funding; AstraZeneca: Consultancy; Travera: Other: Founder/Equity; Ajax: Other: Founder/Equity.


2021 ◽  
Author(s):  
Michael J. Robertson ◽  
Feng He ◽  
Justin G. Meyerowitz ◽  
Alpay B. Seven ◽  
Ouliana Panova ◽  
...  

Cryogenic electron microscopy (cryo-EM) has widened the field of structure-based drug discovery by allowing for routine determination of membrane protein structures previously intractable. However, despite representing one of the largest classes of therapeutic targets, most inactive-state G protein-coupled receptors (GPCRs) have remained inaccessible for cryo-EM because their small size and membrane-embedded nature impedes projection alignment for high-resolution map reconstructions. Here we demonstrate that a camelid single-chain antibody (nanobody) recognizing a grafted intracellular loop can be used to obtain cryo-EM structures of different inactive-state GPCRs at resolutions comparable or better than those obtained by X-ray crystallography. Using this approach, we obtained the structure of human neurotensin 1 receptor (NTSR1) bound to antagonist SR48692, of μ-opioid receptor (MOR) bound to the clinical antagonist alvimopan, as well as the structure of the previously uncharacterized somatostatin receptor 2 (SSTR2) in the apo state; each of these structures yields novel insights into ligand binding and specificity. We expect this rapid, straightforward approach to facilitate the broad structural exploration of GPCR inactive states without the need for extensive engineering and crystallization.


2021 ◽  
Author(s):  
Gabriella Collu ◽  
Inayathulla Mohammed ◽  
Aleix Lafita ◽  
Tobias Bierig ◽  
Emiliya Poghosyan ◽  
...  

The insertion of fusion proteins has enabled the crystallization of a wide range of G–protein–coupled receptors (GPCRs). Here, we explored the possibility of using a larger fusion protein, inserted into the third intracellular loop (ICL3) of β1-adrenoceptor (β1AR) via rigid chimeric helix fusions. The aim was to engineer a single–chain fusion protein that comprises sufficient mass and rigidity to allow single–particle cryo–EM data collection, without depending on binding proteins, such as G–proteins or nanobodies. Through parsing of the protein data bank (PDB), we identified the protein AmpC–β–lactamase as a suitable candidate. Both termini of this protein are α–helical and the helices are antiparallel to each other. The distance between their centroids measures ≈11 Å. Such a geometry is ideal to design extended chimeric helices with transmembrane (TM) helices 5 and 6 of β1AR, and the insertion of the protein adds ≈39 kDa of mass to the receptor. We expressed the β1AR – AmpC β–lactamase fusion protein in mammalian cells. The binding of the antagonists propranolol and cyanopindolol to the purified fusion protein was confirmed by CPM–based thermofluor assays. The cryo–EM structure was solved to a nominal overall resolution of 3.6 Å and the seven helix architecture and helix eight were clearly resolved. Superimposition of the structure with known X–ray crystal structures of β1AR suggests that the protein is in its inactive conformation. The fusion protein described here provides a basis for high–throughput structure elucidation of class A GPCRs by cryo–EM for drug discovery research as well as for the elucidation of inactive state or wild–type GPCR structures. The fusion protein geometry theoretically fits a wide range of class A GPCRs and therefore can be applied to a multitude of receptors.


Cell Research ◽  
2021 ◽  
Author(s):  
Nicolas A. Heyder ◽  
Gunnar Kleinau ◽  
David Speck ◽  
Andrea Schmidt ◽  
Sarah Paisdzior ◽  
...  

AbstractThe melanocortin-4 receptor (MC4R), a hypothalamic master regulator of energy homeostasis and appetite, is a class A G-protein-coupled receptor and a prime target for the pharmacological treatment of obesity. Here, we present cryo-electron microscopy structures of MC4R–Gs-protein complexes with two drugs recently approved by the FDA, the peptide agonists NDP-α-MSH and setmelanotide, with 2.9 Å and 2.6 Å resolution. Together with signaling data from structure-derived MC4R mutants, the complex structures reveal the agonist-induced origin of transmembrane helix (TM) 6-regulated receptor activation. The ligand-binding modes of NDP-α-MSH, a high-affinity linear variant of the endogenous agonist α-MSH, and setmelanotide, a cyclic anti-obesity drug with biased signaling toward Gq/11, underline the key role of TM3 in ligand-specific interactions and of calcium ion as a ligand-adaptable cofactor. The agonist-specific TM3 interplay subsequently impacts receptor–Gs-protein interfaces at intracellular loop 2, which also regulates the G-protein coupling profile of this promiscuous receptor. Finally, our structures reveal mechanistic details of MC4R activation/inhibition, and provide important insights into the regulation of the receptor signaling profile which will facilitate the development of tailored anti-obesity drugs.


2021 ◽  
Author(s):  
Stella Prins ◽  
Valentina Corradi ◽  
David N. Sheppard ◽  
D. Peter Tieleman ◽  
Paola Vergani

AbstractDeletion of phenylalanine 508 (F508del), in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, is the most common cause of cystic fibrosis (CF). F508 is located on nucleotide-binding domain 1 (NBD1) in contact with cytosolic extensions of transmembrane helices, in particular intracellular loop 4 (ICL4). We carried out a mutagenesis scan of ICL4 by introducing five or six second-site mutations at eleven positions in cis with F508del, and quantifying changes in membrane proximity and ion-channel function of CFTR. The scan strongly validated the effectiveness of R1070W at rescuing F508del defects. Molecular dynamics simulations highlighted two features characterizing the ICL4/NBD1 interface of F508del/R1070W-CFTR: flexibility, with frequent transient formation of interdomain hydrogen bonds, and loosely stacked aromatic sidechains, (F1068, R1070W, and F1074, mimicking F1068, F508 and F1074 in wild-type CFTR). F508del-CFTR had a distorted aromatic stack, with F1068 displaced towards space vacated by F508. In F508del/R1070F-CFTR, which largely retained F508del defects, R1070F could not form hydrogen bonds, and the interface was less flexible. Other ICL4 second-site mutations which partially rescued F508del-CFTR are F1068M and F1074M. Methionine side chains allow hydrophobic interactions without the steric rigidity of aromatic rings, possibly conferring flexibility to accommodate the absence of F508 and retain a dynamic interface. Finally, two mutations identified in a yeast scan (A141S and R1097T, on adjacent transmembrane helices linked to ICL1 and ICL4) also partially rescued F508del-CFTR function. These studies highlight the importance of hydrophobic interactions and conformational flexibility at the ICL4/NBD1 interface, advancing understanding of the structural underpinning of F508del dysfunction.


Sign in / Sign up

Export Citation Format

Share Document