scholarly journals Motor Chunking in Internally Guided Sequencing

2021 ◽  
Vol 11 (3) ◽  
pp. 292 ◽  
Author(s):  
Krishn Bera ◽  
Anuj Shukla ◽  
Raju S. Bapi

Motor skill learning involves the acquisition of sequential motor movements with practice. Studies have shown that we learn to execute these sequences efficiently by chaining several elementary actions in sub-sequences called motor chunks. Several experimental paradigms, such as serial reaction task, discrete sequence production, and m × n task, have investigated motor chunking in externally specified sequencing where the environment or task paradigm provides the sequence of stimuli, i.e., the responses are stimulus driven. In this study, we examine motor chunking in a class of more realistic motor tasks that involve internally guided sequencing where the sequence of motor actions is self-generated or internally specified. We employ a grid-navigation task as an exemplar of internally guided sequencing to investigate practice-driven performance improvements due to motor chunking. The participants performed the grid-sailing task (GST) (Fermin et al., 2010), which required navigating (by executing sequential keypresses) a 10 × 10 grid from start to goal position while using a particular type of key mapping between the three cursor movement directions and the three keyboard buttons. We provide empirical evidence for motor chunking in grid-navigation tasks by showing the emergence of subject-specific, unique temporal patterns in response times. Our findings show spontaneous chunking without pre-specified or externally guided structures while replicating the earlier results with a less constrained, internally guided sequencing paradigm.

2021 ◽  
Vol 12 ◽  
Author(s):  
Krishn Bera ◽  
Anuj Shukla ◽  
Raju S. Bapi

Several canonical experimental paradigms (e.g., serial reaction time task, discrete sequence production task, m × n task) have been proposed to study the typical behavioral phenomenon and the nature of learning in sequential keypress tasks. A characteristic feature of most paradigms is that they are representative of externally-specified sequencing—motor tasks where the environment or task paradigm extrinsically provides the sequence of stimuli, i.e., the responses are stimulus-driven. Previous studies utilizing such canonical paradigms have largely overlooked the learning behaviors in a more realistic class of motor tasks that involve internally-guided sequencing—where the sequence of motor actions is self-generated or internally-specified. In this work, we use the grid-navigation task as an instance of internally-guided sequencing to investigate the nature of learning in such paradigms. The participants performed Grid-Sailing Task (GST), which required navigating (by executing sequential keypresses) a 5 × 5 grid from start to goal (SG) position while using a particular key-mapping (KM) among the three cursor-movement directions and the three keyboard buttons. The participants performed two behavioral experiments—Single-SG and Mixed-SG condition. The Single-SG condition required performing GST on a single SG position repeatedly, whereas the Mixed-SG condition involved performing GST using the same KM on two novel SG positions presented in a random, inter-mixed manner. In the Single-SG condition, we show that motor learning contributes to the sequence-specific learning in GST with the repeated execution of the same trajectories. In the Mixed-SG condition, since the participants utilize the previously learned KM, we anticipate a transfer of learning from the Single-SG condition. The acquisition and transfer of a KM-specific internal model facilitates efficient trajectory planning on novel SG conditions. The acquisition of such a KM-specific internal model amounts to trajectory-independent cognitive learning in GST. We show that cognitive learning contributes to the learning in GST by showing transfer-related performance improvements in the Mixed-SG condition. In sum, we show the role of cognitive and motor learning processes in internally-guided sequencing and further make a case for using GST-like grid-navigation paradigms in investigating internally guided skill learning.


2018 ◽  
Author(s):  
Nicola J. Popp ◽  
Atsushi Yokoi ◽  
Paul L. Gribble ◽  
Jörn Diedrichsen

AbstractSkill learning involves the formation of stable motor patterns. In musical and athletic training, however, these stable motor habits can also impede the attainment of higher levels of performance. We developed an experimental paradigm to induce a specific motor pattern in the context of a discrete sequence production task and to investigate how these habits affect performance over a 3-week training period. Participants initially practiced small segments of 2 to 3 finger movements (“chunks”) and then learned longer sequences composed of these chunks. This initial training induced a persistent temporal pattern during execution, with shorter inter-press-intervals within a chunk and longer ones at chunk boundaries. This pattern remained stable during the subsequent 10 days of training, in which participants were asked to produce the sequence as fast as possible from memory. The habit was also preserved when the sequences were directly displayed, removing the need for memory recall. We were able to induce chunking patterns that were either beneficial or detrimental to performance by taking into consideration the biomechanical constraints of the sequences. While we observed an overall reduction in the detrimental effect of the disadvantageous chunking instructions with training, our results show that the degree to which these detrimental chunk structures were maintained, was predictive of lower levels of final performance. In sum, we were able to induce beneficial and detrimental motor habits in a motor sequence production task and show that these initial instructions influenced performance outcomes over a prolonged period of time.Significance StatementA habit is defined as an automatized action that resists modification once sufficiently established. Preventing bad habits, while reinforcing good habits, is a key objective when teaching new motor skills. While habit formation is an integral part of motor skill acquisition, previous research has focused on habit formation in terms of action selection. In this paper, we examine habit formation in terms of motor skill execution, after the action has been selected. We were able to induce beneficial or detrimental motor habits in the production of motor sequences. Habits were stable over a prolonged training period. Our results demonstrate how cognitive instruction can lead to persistent motor habits and we explore how these habits are potentially modified with training.


2020 ◽  
pp. 095679762095863 ◽  
Author(s):  
Adi Shechter ◽  
David L. Share

Rapid and seemingly effortless word recognition is a virtually unquestioned characteristic of skilled reading, yet the definition and operationalization of the concept of cognitive effort have proven elusive. We investigated the cognitive effort involved in oral and silent word reading using pupillometry among adults (Experiment 1, N = 30; Experiment 2, N = 20) and fourth through sixth graders (Experiment 3, N = 30; Experiment 4, N = 18). We compared multiple pupillary measures (mean, peak, and peak latency) for reading familiar words (real words) and unfamiliar letter strings (pseudowords) varying in length. Converging with the behavioral data for accuracy and response times, pupillary responses demonstrated a greater degree of cognitive effort for pseudowords compared with real words and stronger length effects for pseudowords than for real words. These findings open up new possibilities for studying the issue of effort and effortlessness in the field of word recognition and other fields of skill learning.


2014 ◽  
Vol 112 (8) ◽  
pp. 1849-1856 ◽  
Author(s):  
Daniel E. Acuna ◽  
Nicholas F. Wymbs ◽  
Chelsea A. Reynolds ◽  
Nathalie Picard ◽  
Robert S. Turner ◽  
...  

Sequence production tasks are a standard tool to analyze motor learning, consolidation, and habituation. As sequences are learned, movements are typically grouped into subsets or chunks. For example, most Americans memorize telephone numbers in two chunks of three digits, and one chunk of four. Studies generally use response times or error rates to estimate how subjects chunk, and these estimates are often related to physiological data. Here we show that chunking is simultaneously reflected in reaction times, errors, and their correlations. This multimodal structure enables us to propose a Bayesian algorithm that better estimates chunks while avoiding overfitting. Our algorithm reveals previously unknown behavioral structure, such as an increased error correlations with training, and promises a useful tool for the characterization of many forms of sequential motor behavior.


2019 ◽  
Author(s):  
Dora Juhasz ◽  
Dezso Nemeth ◽  
Karolina Janacsek

AbstractCharacterizing the developmental trajectories of cognitive functions such as learning, memory and decision making across the lifespan faces fundamental challenges. Cognitive functions typically encompass several processes that can be differentially affected by age. Methodological issues also arise when comparisons are made across age groups that differ in basic performance measures, such as in average response times (RTs). Here we focus on procedural learning – a fundamental cognitive function that underlies the acquisition of cognitive, social, and motor skills – and demonstrate how disentangling subprocesses of learning and controlling for differences in average RTs can reveal different developmental trajectories across the human lifespan. Two hundred-seventy participants aged between 7 and 85 years performed a probabilistic sequence learning task that enabled us to separately measure two processes of procedural learning, namely general skill learning and statistical learning. Using raw RT measures, in between-group comparisons, we found a U-shaped trajectory with children and older adults exhibiting greater general skill learning compared to adolescents and younger adults. However, when we controlled for differences in average RTs (either by using ratio scores or focusing on a subsample of participants with similar average speed), only children (but not older adults) demonstrated superior general skill learning consistently across analyses. Testing the relationship between average RTs and general skill learning within age groups shed light on further age-related differences, suggesting that general skill learning measures are more affected by average speed in some age groups. Consistent with previous studies of learning probabilistic regularities, statistical learning showed a gradual decline across the lifespan, and learning performance seemed to be independent of average speed, regardless of the age group. Overall, our results suggest that children are superior learners in various aspects of procedural learning, including both general skill and statistical learning. Our study also highlights the importance to test, and control for, the effect of average speed on other RT measures of cognitive functions, which can fundamentally affect the interpretation of group differences in developmental, aging and clinical psychology and neuroscience studies.


Author(s):  
Luciana Grolli Ardenghi ◽  
Alana Verza Signorini ◽  
Gerson Schulz Maahs ◽  
Fabio Selaimen ◽  
Konrado Massing Deutsch ◽  
...  

Abstract Introduction Dysphagia is a relevant symptom in Parkinson disease (PD), and its pathophysiology is poorly understood. To date, researchers have not investigated the effects of combined motor tasks on swallowing. Such an assessment is of particular interest in PD, in which patients have specific difficulties while performing two movements simultaneously. Objective The present study tested the hypothesis that performing concurrent tasks could decrease the safety of swallowing in PD patients as visualized using fiberoptic endoscopic evaluation of swallowing (FEES). Methods A total of 19 patients and 19 controls matched by age, gender, and level of schooling were compared by FEES under two conditions: isolated swallowing and dual task (swallowing during non-sequential opposition of the thumb against the other fingers). The two tasks involved volumes of food of 3 mL and 5 mL. The PD subjects were classified according to the Hoehn & Yahr (H&Y) Scale, the Mini Mental State Examination (MMSE), and the Montreal Cognitive Assessment (MoCA). The FEES assessment was performed according to the Boston Residue and Clearance Scale (BRACS). Results The data showed a significant worsening of swallowing in the dual task assessment for both volumes (3 mL: p ≤ 0.001; 5 mL: p ≤ 0.001) in the PD group. A correlation between the MoCA and dual-task swallowing of 3 mL was also found. Conclusion These findings suggest that additional tasks involving manual motor movements result in swallowing impairment in patients with PD. Moreover, these data highlight the need to further evaluate such conditions during treatment and assessment of PD patients.


Sign in / Sign up

Export Citation Format

Share Document