scholarly journals Manipulations of the Response-Stimulus Intervals as a Factor Inducing Controlled Amount of Reaction Time Intra-Individual Variability

2021 ◽  
Vol 11 (5) ◽  
pp. 669
Author(s):  
Paweł Krukow ◽  
Małgorzata Plechawska-Wójcik ◽  
Arkadiusz Podkowiński

Aggrandized fluctuations in the series of reaction times (RTs) are a very sensitive marker of neurocognitive disorders present in neuropsychiatric populations, pathological ageing and in patients with acquired brain injury. Even though it was documented that processing inconsistency founds a background of higher-order cognitive functions disturbances, there is a vast heterogeneity regarding types of task used to compute RT-related variability, which impedes determining the relationship between elementary and more complex cognitive processes. Considering the above, our goal was to develop a relatively new assessment method based on a simple reaction time paradigm, conducive to eliciting a controlled range of intra-individual variability. It was hypothesized that performance variability might be induced by manipulation of response-stimulus interval’s length and regularity. In order to verify this hypothesis, a group of 107 healthy students was tested using a series of digitalized tasks and their results were analyzed using parametric and ex-Gaussian statistics of RTs distributional markers. In general, these analyses proved that intra-individual variability might be evoked by a given type of response-stimulus interval manipulation even when it is applied to the simple reaction time task. Collected outcomes were discussed with reference to neuroscientific concepts of attentional resources and functional neural networks.

2018 ◽  
Author(s):  
Esin Karahan ◽  
Alison G. Costigan ◽  
Kim S. Graham ◽  
Andrew D. Lawrence ◽  
Jiaxiang Zhang

AbstractThe speed of voluntary reaction to an external stimulus varies substantially between individuals and is impaired in ageing. However, the neuroanatomical origins of inter-individual variability in reaction time (RT) remain largely unknown. Here, we combined a cognitive model of RT and a biophysical compartmental model of diffusion-weighted MRI (DWI) to characterize the relationship between RT and microstructure of the corticospinal tract (CST) and the optic radiation (OR), the primary motor output and visual input pathways associated with visual-motor responses.We fitted an accumulator model of RT to 46 female participants’ behavioral performance in a simple reaction time task. The non-decision time parameter (Ter) derived from the model was used to account for the latencies of stimulus encoding and action initiation. From multi-shell DWI data, we quantified tissue microstructure of the CST and OR with the neurite orientation dispersion and density imaging (NODDI) model as well as the conventional diffusion tensor imaging (DTI) model.Using novel skeletonization and segmentation approaches, we showed that DWI-based microstructure metrics varied substantially along CST and OR. The Ter of individual participants was negatively correlated with the NODDI measure of the neurite density in the bilateral superior CST. At an uncorrected threshold, the Ter positively correlated with the DTI measure of fractional anisotropy in an anterior segment of left OR. Further, we found no significant correlation between the microstructural measures and mean RT. Thus, our findings suggest a link between the inter-individual variability of sensorimotor speed and selective microstructural properties in white matter tracts.


1994 ◽  
Vol 79 (2) ◽  
pp. 995-1002 ◽  
Author(s):  
Piotr Jaśkowski ◽  
Marek Wróblewski ◽  
Dorota Hojan-Jezierska

For 20 subjects reaction times and force of response were measured on a simple reaction time task to visual stimuli while activation was manipulated by occasionally delivering a noninformative electrical shock. In blocks in which shocks were delivered, forces of response were larger than those in control blocks without shocks. The results are discussed in terms of Sanders' mode! of stress.


1988 ◽  
Vol 66 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Andrew J. Tilley ◽  
Philip Bohle

8 subjects performed an unprepared simple reaction time task for 20 min. every 2 hr. while taking part in an all night disco dancing marathon (continuous exercise) and during a control (no exercise) night. Mean reaction times were significantly faster and less variable during the dance marathon. It was suggested that the effects of continuous exercise in the form of disco dancing may be to reduce drowsiness which in turn assists performance.


1976 ◽  
Vol 16 (3) ◽  
pp. 311-315 ◽  
Author(s):  
Patricia T. Michie ◽  
Alex M. Clarke ◽  
John D. Sinden ◽  
Leonard C.T. Glue

1999 ◽  
Vol 128 (1-2) ◽  
pp. 256-261 ◽  
Author(s):  
Gregor Thut ◽  
Claude-Alain Hauert ◽  
Stéphanie Morand ◽  
Margitta Seeck ◽  
Theodor Landis ◽  
...  

1991 ◽  
Vol 73 (3) ◽  
pp. 863-866 ◽  
Author(s):  
Jos J. Adam ◽  
Loe M. A. Van Veggel

The present study evaluated the potential for neuroanatomical factors to operate in a simple reaction time task. That is, response latencies were recorded for all ten fingers on a Donders' A reaction time task. Two finger-placement conditions were used, a single response key condition and a multiple response key condition. This latter condition required subjects to place all ten fingers on response keys. 30 male, right-handed subjects participated. No significant effects were found, indicating that there are no intrinsically slow or fast fingers. This finding is discussed in the context of reaction time differences between individual stimulus-response (finger) pairs in choice-reaction time tasks.


Sign in / Sign up

Export Citation Format

Share Document