scholarly journals Effect of Neck Muscle Fatigue on Hand Muscle Motor Performance and Early Somatosensory Evoked Potentials

2021 ◽  
Vol 11 (11) ◽  
pp. 1481
Author(s):  
Mahboobeh Zabihhosseinian ◽  
Paul Yielder ◽  
Rufeyda Wise ◽  
Michael Holmes ◽  
Bernadette Murphy

Even on pain free days, recurrent neck pain alters sensorimotor integration (SMI) measured via somatosensory evoked potentials (SEPs). Neck muscle fatigue decreases upper limb proprioception, and thus may interfere with upper limb motor task acquisition and SMI. This study aimed to determine the effect of cervical extensor muscle (CEM) fatigue on upper limb motor acquisition and retention; and SMI, measured via early SEPs. Twenty-four healthy right-handed individuals were randomly assigned to control or CEM fatigue. Baseline SEPs were elicited via median nerve stimulation at the wrist. Participants then lay prone on a padded table. The fatigue group supported a 2 kg weight until they could no longer maintain the position. The control group rested their neck in neutral for 5 min. Participants completed pre- and post-motor skill acquisition while seated, SEPs were again collected. Task retention was measured 24 h later. Accuracy improved post acquisition and at retention for both groups (p < 0.001), with controls outperforming the fatigue group (p < 0.05). The fatigue group had significantly greater increases in the N24 (p = 0.017) and N30 (p = 0.007) SEP peaks. CEM fatigue impaired upper limb motor learning outcomes in conjunction with differential changes in SEP peak amplitudes related to SMI.

2020 ◽  
Vol 10 (5) ◽  
pp. 290 ◽  
Author(s):  
Mahboobeh Zabihhosseinian ◽  
Ryan Gilley ◽  
Danielle Andrew ◽  
Bernadette Murphy ◽  
Paul Yielder

During training in a novel dynamic environment, the non-dominant upper limb favors feedback control, whereas the dominant limb favors feedforward mechanisms. Early somatosensory evoked potentials (SEPs) offer a means to explore differences in cortical regions involved in sensorimotor integration (SMI). This study sought to compare differences in SMI between the right (Dom) and left (Non-Dom) hand in healthy right-handed participants. SEPs were recorded in response to median nerve stimulation, at baseline and post, a motor skill acquisition-tracing task. One group (n = 12) trained with their Dom hand and the other group (n = 12), with their Non-Dom hand. The Non-Dom hand was significantly more accurate at baseline (p < 0.0001) and both groups improved with time (p < 0.0001), for task accuracy, with no significant interaction effect between groups for both post-acquisition and retention. There were significant group interactions for the N24 (p < 0.001) and the N30 (p < 0.0001) SEP peaks. Post motor acquisition, the Dom hand had a 28.9% decrease in the N24 and a 23.8% increase in the N30, with opposite directional changes for the Non-Dom hand; 22.04% increase in N24 and 24% decrease in the N30. These SEP changes reveal differences in early SMI between Dom and Non-Dom hands in response to motor acquisition, providing objective, temporally sensitive measures of differences in neural mechanisms between the limbs.


2013 ◽  
Vol 19 (3) ◽  
pp. 288-292 ◽  
Author(s):  
Yuichiro Morishita ◽  
Takeshi Maeda ◽  
Takayoshi Ueta ◽  
Masatoshi Naito ◽  
Keiichiro Shiba

Object The goal of this prospective study was to investigate somatosensory evoked potentials (SSEPs) during dynamic motion of the cervical spine and to evaluate the efficacy of analyzing dynamic SSEPs for predicting dynamic effects on the spinal cord in patients with cervical spondylotic myelopathy (CSM). Methods In total, 40 human subjects (20 CSM patients and 20 healthy volunteers as a control group) were examined prospectively using dynamic SSEPs with median nerve stimulation. The CSM patients showed cervical myelopathy due to cervical cord compression at the C4–5 segment. The SSEPs were examined with the cervical spine in a neutral position and at a 20° extension for 10 and 20 minutes. Changes in the N20 latency and amplitude were determined and analyzed. The authors defined the changes in the N20 latency and N20 amplitude between the neutral and extension positions of the cervical spine as percent latency and amplitude, respectively. Results In the CSM patients, SSEPs tended to deteriorate after cervical spine extension, and a statistically significant deterioration of the N20 amplitude after the extension was observed. Moreover, the percent latency and amplitude progressively increased during cervical spine extension in these patients. In the healthy controls, SSEPs tended to deteriorate with cervical spine extension, but these changes did not result in statistically significant differences. Moreover, in this group the percent latency and amplitude were almost identical during the extension. When the CSM patients and the healthy controls were compared, a significant difference in the percent amplitude was observed between the 2 groups during the cervical spine extension. Conclusions This study suggests the potential of dynamic SSEPs as a useful neurophysiological technique to detect the effect of dynamic factors on the pathogenesis of CSM.


2020 ◽  
Vol 124 (3) ◽  
pp. 844-855
Author(s):  
Mahboobeh Zabihhosseinian ◽  
Paul Yielder ◽  
Victoria Berkers ◽  
Ushani Ambalavanar ◽  
Michael Holmes ◽  
...  

Normally motor learning decreases cerebellar inhibition (CBI) to facilitate learning of a novel skill. In this study, neck fatigue before motor skill acquisition led to less of a decrease in CBI and significantly less improvement in performance accuracy relative to a control group. This study demonstrated that neck fatigue impacts the cerebellar-motor cortex interaction to distal hand muscles, a highly relevant finding due to the altered neck postures and fatigue accompanying increased technology use.


2015 ◽  
Vol 233 (5) ◽  
pp. 1663-1675 ◽  
Author(s):  
Mahboobeh Zabihhosseinian ◽  
Michael W. R. Holmes ◽  
Bernadette Murphy

Author(s):  
Sarker P. ◽  
Norasi H. ◽  
Koenig J. ◽  
Hallbeck M.S. ◽  
Mirka GA.

Neurosurgery ◽  
1991 ◽  
Vol 28 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Fumio Shima ◽  
Takato Morioka ◽  
Shozo Tobimatsu ◽  
Omiros Kavaklis ◽  
Motohiro Kato ◽  
...  

Abstract To improve the localization of stereotactic targets, somatosensory evoked potentials (SEPs) were recorded from the thalamus and subthalamic area using a specially designed semimicroelectrode in 61 patients and a conventional “macroclectrode” in 17 patients. By means of the semimicroelectrode, median nerve stimulation evoked two distinct SEPs, consisting of a diphasic wave with a huge positivity restricted to the nucleus ventrocaudalis (Vc) and a triphasic wave of lower amplitude with a major negativity in the ventral part of the nucleus ventrointermedius (Vim) and nucleus ventrooralis posterior (Vop) as well as the subthalamic lemniscal pathway. The Vim-Vc junction could thus be clearly delineated by an abrupt transition of SEPs from one type to the other with a precision of 1 mm. The parvicellular part of the Vc (Vcpc). situated in its basal region, was distinguishable from the Vc proper by a significant reduction of the positivity elicited by stimulation of the median nerve and by a rapid growth of a diphasic SEPs to stimulation of the posterior tibial nerve. In the other thalamic nuclei, stimulation of the median nerve elicited triphasic SEPs of a very small amplitude, suggesting a volume conduction current from the lemniscal pathway. With the macroclectrode, the positivity in the Vc was sensitive to electrode manipulation and the thalamic nuclei could not be distinctly outlined. SEP monitoring using the semimicroelectrode significantly improved the precision of target localization, which allowed minimizing of the volume of the therapeutic lesion without losing surgical effectiveness, while avoiding complications associated with increased penetration of the coagulating electrode. It is suggested that recording serial thalamic SEPs with the semimicroelectrode is a practical method to refine stereotactic targets in the thalamus.


2005 ◽  
Vol 99 (1) ◽  
pp. 141-153 ◽  
Author(s):  
Micaela Schmid ◽  
Marco Schieppati

Neck proprioceptive input, as elicited by muscle vibration, can produce destabilizing effects on stance and locomotion. Neck muscle fatigue produces destabilizing effects on stance, too. Our aim was to assess whether neck muscle fatigue can also perturb the orientation in space during a walking task. Direction and amplitude of the path covered during stepping in place were measured in 10 blindfolded subjects, who performed five 30-s stepping trials before and after a 5-min period of isometric dorsal neck muscle contraction against a load. Neck muscle electromyogram amplitude and median frequency during the head extensor effort were used to compute a fatigue index. Head and body kinematics were recorded by an optoelectronic system, and stepping cadence was measured by sensorized insoles. Before the contraction period, subjects normally stepped on the spot or drifted forward. After contraction, some subjects reproduced the same behavior, whereas others reduced their forward progression or even stepped backward. The former subjects showed minimal signs of fatigue and the latter ones marked signs of fatigue, as quantified by the dorsal neck electromyogram index. Head position and cadence were unaffected in either group of subjects. We argue that the abnormal fatigue-induced afferent input originating in the receptors transducing the neck muscle metabolic state can modulate the egocentric spatial reference frame. Notably, the effects of neck muscle fatigue on orientation are opposite to those produced by neck proprioception. The neck represents a complex source of inputs capable of modifying our orientation in space during a locomotor task.


Sign in / Sign up

Export Citation Format

Share Document