limb proprioception
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
pp. 003151252110364
Author(s):  
Cortney Armitano-Lago ◽  
Hunter J. Bennett ◽  
Justin A. Haegele

Autism spectrum disorder (ASD) is a complex diagnosis characterized primarily by persistent deficits in social communication/interaction and repetitive behavior patterns, interests, and/or activities. ASD is also characterized by various physiological and/or behavioral features that span sensory, neurological, and neuromotor function. Although problems with lower body coordination and control have been noted, little prior research has examined lower extremity strength and proprioception, a process requiring integration of sensorimotor information to locate body/limbs in space. We designed this study to compare lower limb proprioception and strength in adolescents with ASD and neurotypical controls. Adolescents diagnosed with ASD (n = 17) and matched controls (n = 17) performed ankle plantarflexion/dorsiflexion bilateral proprioception and strength tests on an isokinetic dynamometer. We assessed position-based proprioception using three targeted positions (5 and 20-degrees plantarflexion and 10-degrees dorsiflexion) and speed-based proprioception using two targeted speeds (60 and 120-degrees/second). We assessed strength at 60-degrees/second. Participants with ASD performed 1.3-times more poorly during plantarflexion position and 2-times more poorly during the speed-based proprioception tests compared to controls. Participants with ASD also exhibited a 40% reduction in plantarflexion strength compared to controls. These findings provide insight into mechanisms that underly the reduced coordination, aberrant gait mechanics, and coordination problems often seen in individuals with ASD, and the identification of these mechanisms now permits better targeting of rehabilitative goals in treatment programs.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 121-125
Author(s):  
Jasaswi Ray ◽  
Chinmaya Keshari Sahoo ◽  
Rajashree Mohanty ◽  
Rakesh Sahoo ◽  
Rajashree Dalai

Diabetic peripheral neuropathy (DPN) is a common complication of both type 1 and type 2 diabetes affecting over 90% of the diabetic patients. Due to the toxic effects of hyperglycemia there is development of this complication. It is typically characterized by significant deficits in tactile sensitivity, vibration sense, lower-limb proprioception, and kinesthesia. Painful DPN has been shown to be associated with significant reductions in overall quality of life, increased levels of anxiety and depression, sleep impairment, and greater gait variability. Hence DPN is often inadequately treated, and the role of improving glycaemic control in diabetes. Major international clinical guidelines for the management of DPN recommend several symptomatic treatments. First-line therapies include tricyclic antidepressants, serotonin–noradrenaline reuptake inhibitors, and anti-consultants that act on calcium channels. Other therapies include opioids and topical agents such as capsaicin and lidocaine. The objectives of this paper are to review current guidelines for the pharmacological management of DPN. Keywords: DPN, hyperglycemia, depression, lidocaine


2021 ◽  
Vol 75 ◽  
pp. 102748
Author(s):  
Yu-Ting Tseng ◽  
Fu-Chen Chen ◽  
Chia-Liang Tsai ◽  
Jürgen Konczak

Motor Control ◽  
2020 ◽  
Vol 24 (4) ◽  
pp. 571-587
Author(s):  
Xiaoyue Hu ◽  
Jingxian Li ◽  
Lin Wang

Twenty-four healthy adults, including 12 females and 12 males, participated in the study. Each female participant completed three trials in three different phases of one menstrual cycle, which included follicular, ovulatory, and luteal phases. The study aimed to investigate whether there is any difference in joint kinetic sense, neuromuscular coordination, and isokinetic muscle strength (a) between healthy males and females at different phases of the menstrual cycle and (b) between females at different phases of the menstrual cycle. The outcome measures included the number of jumps in the square-hop test and ankle and knee proprioception, which were assessed by an electric-driven movable frame rotated at 0.4 deg/s and isokinetic muscle strength measured by a computerized dynamometer (Biodex). For the square-hop test (p = .006), ankle dorsiflexion/plantar flexion (p < .05), knee flexion/extension (p < .05), the relative peak torque of the isokinetic muscle strength at the 60° and 180° knee flexion/extension (p < .001), and the 30° and 120° ankle plantar flexion/dorsiflexion (p < .05) between females and males showed significant differences. For the females at different phases of the menstrual cycle, significant differences were found on ankle dorsiflexion (p = .003), plantar flexion (p = .023), knee extension (p = .029), the square-hop test (p = .036), and relative peak torque of isokinetic muscle strength at 180° knee flexion (p = .029). This study demonstrated that there are sex differences in lower limb proprioception and mechanical function. Females at ovulatory and luteal phases have better lower limb proprioception than at the follicular phase.


2019 ◽  
Vol 100 (6) ◽  
pp. 1102-1113 ◽  
Author(s):  
Liye Zou ◽  
Jia Han ◽  
Chunxiao Li ◽  
Albert S. Yeung ◽  
Stanley Sai-chuen Hui ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
pp. 35-48
Author(s):  
Nazma Akter

Diabetic peripheral neuropathy (DPN) is a common complication of both type 1 and type 2 diabetes. It affects over 90% of the diabetic patients. It is widely accepted that the toxic effects of hyperglycemia play an important role in the development of this complication, but several other hypotheses have been postulated. It is typically characterized by significant deficits in tactile sensitivity, vibration sense, lower-limb proprioception, and kinesthesia. Painful DPN has been shown to be associated with significant reductions in overall quality of life, increased levels of anxiety and depression, sleep impairment, and greater gait variability. DPN is often misdiagnosed and inadequately treated. Clinical recognition of DPN is imperative for allowing timely symptom management to reduce the morbidity associated with this condition. The management of diabetic neuropathic pain consists basically in excluding other causes of painful peripheral neuropathy, improving glycemic control as a prophylactic therapy and using medications to alleviate pain. First line drugs for pain relief include anticonvulsants, such as pregabalin and gabapentin and antidepressants, especially those that act to inhibit the reuptake of serotonin and noradrenaline. In addition, there is experimental and clinical evidence that opioids can be helpful in pain control, mainly if associated with first line drugs. Other agents, including for topical application, such as capsaicin cream and lidocaine patches, have also been proposed to be useful as adjuvant in the control of diabetic neuropathic pain, but the clinical evidence is insufficient to support their use. The purpose of this review is to examine proposed mechanisms of DPN, summarize current treatment regimen. A better understanding of the mechanisms underlying diabetic neuropathic pain will contribute to the search of new therapies. Delta Med Col J. Jan 2019 7(1): 35-48


Sign in / Sign up

Export Citation Format

Share Document