scholarly journals Displacement-Based Seismic Assessment of the Likelihood of Failure of Reinforced Concrete Wall Buildings

Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 295
Author(s):  
Amirhossein Orumiyehei ◽  
Timothy J. Sullivan

To strengthen the resilience of our built environment, a good understanding of seismic risk is required. Probabilistic performance-based assessment is able to rigorously compute seismic risk and the advent of numerical computer-based analyses has helped with this. However, it is still a challenging process and as such, this study presents a simplified probabilistic displacement-based assessment approach for reinforced concrete wall buildings. The proposed approach is trialed by applying the methodology to 4-, 8-, and 12-story case study buildings, and results are compared with those obtained via multi-stripe analyses, with allowance for uncertainty in demand and capacity, including some allowance for modeling uncertainty. The results indicate that the proposed approach enables practitioners to practically estimate the median intensity associated with exceeding a given mechanism and the annual probability of exceeding assessment limit states. Further research to extend the simplified approach to other structural systems is recommended. Moreover, the research highlights the need for more information on the uncertainty in our strength and deformation estimates, to improve the accuracy of risk assessment procedures.

2021 ◽  
Vol 238 ◽  
pp. 111995
Author(s):  
S.J. Tagle ◽  
R. Jünemann ◽  
J. Vásquez ◽  
J.C. de la Llera ◽  
M. Baiguera

2010 ◽  
Vol 133-134 ◽  
pp. 1119-1124 ◽  
Author(s):  
Sergio Lagomarsino ◽  
Hormoz Modaressi ◽  
Kiriazis Pitilakis ◽  
Vlatko Bosiljkov ◽  
Chiara Calderini ◽  
...  

The paper describes the methodology proposed in the PERPETUATE Project (funded by the Seventh Framework Programme – Theme ENV.2009.3.2.1.1). The methodology proposed in PERPETUATE uses a displacement-based approach for the vulnerability evaluation and design of interventions. The use of safety verification in terms of displacement, rather than strength, orients to new strengthening techniques and helps in the comprehension of interaction between structural elements and unmovable artistic assets. The procedure is based on the following fundamental steps: definition of performance limit states, specific for the cultural heritage assets (considering both structural and artistic assets); evaluation of seismic hazard and soil-foundation interactions; construction knowledge (non-destructive testing, material parameters, structural identification); development of structural models for the seismic analysis of masonry structures and artistic assets and design of interventions; application and validation of the methodology to case studies. Two main scales are considered: the seismic risk assessment at territorial scale and at the scale of single historic building or artistic assets. The final aim of the project is to develop European Guidelines for evaluation and mitigation of seismic risk to cultural heritage assets.


Sign in / Sign up

Export Citation Format

Share Document