scholarly journals Assessment of Timber Roof Structures before and after Earthquakes

Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 528
Author(s):  
Nikola Perković ◽  
Mislav Stepinac ◽  
Vlatka Rajčić ◽  
Jure Barbalić

The global objective of sustainable development has been greatly directed toward the preservation of existing structures. Therefore, condition assessment and reconstruction of existing timber structures have been gaining importance in recent times. This is particularly evident on timber roofs whose elements are exposed to degradation, either because of rheological effects or due to the direct influence of moisture and biological factors. In case of accidental events, such as an earthquake, the question of the structure’s condition is essential for the condition of the entire building. In order to prove the load-bearing capacity and serviceability of existing structures, as well as to check the need for reconstruction, it is necessary to define crucial parameters that are influencing the condition of materials, elements, and systems. Although there are many non destructive testing methods, the frequency and scope of their use, as well as the decision-making approach, have not been defined. In the paper, non-destructive and semi-destructive methods frequently used for timber structures are explained. A systematic review of criteria to be used in the assessment of load-bearing timber structures in a seismic active area was the main objective of this paper as well as the illustration of non-destructive and semi-destructive test methods through a case study involving roof construction of a hundred-year-old building in Zagreb, Croatia. Pre- and post-earthquake inspection was made. The overall condition of the roof structure after two significant earthquakes can be assessed as satisfactory given that the observed system is a large-span and massive roof structure. The presented results and identification of typical damages after the earthquake are presented in order to facilitate policy makers and for the future implementation of development strategies in the renovation of the city.

2013 ◽  
Vol 778 ◽  
pp. 321-327 ◽  
Author(s):  
Steffen Franke ◽  
Bettina Franke ◽  
Florian Scharmacher

The assessment of timber structures is a permanent task to check the normal function of individual structural timber elements. Non-destructive testing methods are preferred but the value of the information is limited due to the performance of the applied assessment method. However, X-ray is a technology which allows a view into the structural member or the connections. The mobile X-ray technology has been used in laboratory tests and practical situations at existing structures and led to excellent results which allowed detailed analyses. The method and its possibilities for non-destructive testing of timber structures will be presented. The results reached show a high potential for an effective assessment of existing structures including connections and structural timber members.


2018 ◽  
Vol 199 ◽  
pp. 06001 ◽  
Author(s):  
Stefan Küttenbaum ◽  
Alexander Taffe ◽  
Thomas Braml ◽  
Stefan Maack

The non-destructive testing methods available for civil engineering (NDT-CE) enable the measurements of quantitative parameters, which realistically describe the characteristics of existing buildings. In the past, methods for quality evaluation and concepts for validation expanded into NDT-CE to improve the objectivity of measured data. Thereby, a metrological foundation was developed to collect statistically sound and structurally relevant information about the inner construction of structures without destructive interventions. More recently, the demand for recalculations of structural safety was identified. This paper summarizes a basic research study on structural analyses of bridges in combination with NDT. The aim is to use measurement data of nondestructive testing methods as stochastic quantities in static calculations. Therefore, a methodical interface between the guide to the expression of uncertainty in measurement and probabilistic approximation procedures (e.g. FORM) has been proven to be suitable. The motivation is to relate the scientific approach of the structural analysis with real information coming from existing structures and not with those found in the literature. A case study about the probabilistic bending proof of a reinforced concrete bridge with statistically verified data from ultrasonic measurements shows that the measuring results fulfil the requirements concerning precision, trueness, objectivity and reliability.


2020 ◽  
Vol 39 (3) ◽  
Author(s):  
Jagoda Nowak-Grzebyta ◽  
Frans Meijer ◽  
Karol Bula ◽  
Ewa Stachowska

Abstract This paper presents the use of a digital holographic vibrometer to investigate metal-polymer laminates by non-destructive testing. A polymer strip was glued to a metal one of the same size. Connection defects could be detected by a local change of the vibration amplitude, even when hidden from view for the observer. The amplitudes of the oscillations excited in the samples were up to 40 nm. This method proved to be non-destructive, allowing the samples to be (re)used after testing, or being studied with other test methods.


Sign in / Sign up

Export Citation Format

Share Document