polymer laminates
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 62)

H-INDEX

32
(FIVE YEARS 4)

Author(s):  
Zezhong Shan ◽  
Minghui Tian ◽  
Xiang Lu

AbstractGlass fiber-reinforced polymer materials have been effectively used in civil aviation aircraft, but due to low electrical conductivity, a large area of ablation damage will occur after lightning strikes, which greatly threatens the safety of civil aircrafts. Based on this, the coupled electrical-thermal finite element analysis model for a lightning ablation damage of glass fiber reinforced polymer materials is established, and the analysis results are compared with the experiment, and the error rate is 1.26%, which verifies the accuracy of the model. In addition, different influencing factors are analyzed to study the lightning protection characteristics of glass fiber reinforced polymer on carbon fiber-reinforced polymer laminates. The results show that glass fiber reinforced polymer materials have low lightning resistance, but they can effectively reduce the lightning ablation damage area of carbon fiber reinforced polymer laminates under the joint protection of them and aluminum coating. However, they have different protective effects on different protective forms of laminates. Among them, the thickness of aluminum coating has a higher impact on the lightning protection efficiency of full spraying aluminum protective laminates, and the thickness of glass fiber reinforced polymer materials has a higher impact on the lightning protection efficiency of local spraying aluminum protective laminates.


Author(s):  
K. S. Vishwanath

The fiber reinforced polymer laminates have found extensive applications because of its advantages over other materials in terms of strength to weight ratio, manufacturing flexibility and so on. But in the transverse direction, strength is comparatively less so that a failure mechanism called delamination will occur in case of poor manufacturing or when tools are dropped. In this paper, Surface based Cohesive contact behavior is implemented at the interface between base and sub laminate to investigate for 60mm through the width buckling driven delamination growth. The computational prediction of delamination growth initiation is obtained by solving a HTA/6376C composite laminate specimen for geometric non linearity using SC8R continuum shell elements of Abaqus CAE and by plotting the inplane loads versus out of plane displacements.


Sign in / Sign up

Export Citation Format

Share Document