scholarly journals Contribution of Neuropilin-1 in Radiation-Survived Subclones of NSCLC Cell Line H1299

2021 ◽  
Vol 43 (3) ◽  
pp. 1203-1211
Author(s):  
Kaori Tsutsumi ◽  
Ayaka Chiba ◽  
Yuta Tadaki ◽  
Shima Minaki ◽  
Takahito Ooshima ◽  
...  

Non-small cell lung cancer (NSCLC) is an aggressive lung cancer accounting for approximately 85% of all lung cancer patients. For the patients with Stages IIIA, IIIB, and IIIC, the 5-year survival is low though with the combination with radiotherapy and chemotherapy. In addition, the occurrence of tumor cells (repopulated tumors) that survive irradiation remains a challenge. In our previous report, we subcloned the radiation-surviving tumor cells (IR cells) using the human NSCLC cell line, H1299, and found that the expression of neuropilin-1 (NRP-1) was upregulated in IR cells by the microarray analysis. Here, we investigated the contribution of neuropilin-1 to changes in the characteristics of IR cells. Although there were no differences in angiogenic activity in the tube formation assay between parental and IR cells, the cell motility was increased in IR cells compared to parental cells in the cell migration assay. This enhanced cell motility was suppressed by pretreatment with anti-NRP-1 antibody. Although further studies are necessary to identify other molecules associated with NRP-1, the increase in cellular motility in IR cells might be due to the contribution of NRP-1. Inhibition of NRP-1 would help control tumor malignancy in radiation-surviving NSCLC.

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 917
Author(s):  
Valeria Sorrenti ◽  
Agata Grazia D’Amico ◽  
Ignazio Barbagallo ◽  
Valeria Consoli ◽  
Salvo Grosso ◽  
...  

In order to maintain redox homeostasis, non-small-cell lung cancer (NSCLC) increases the activation of many antioxidant systems, including the heme-oxygenase (HO) system. The overexpression of HO-1 has been often associated with chemoresistance and tumor aggressiveness. Our results clearly showed an overexpression of the HO-1 protein in A549 NSCLC cell lines compared to that in non-cancerous cells. Thus, we hypothesized that “off-label” use of tin mesoporphyrin, a well-known HO activity inhibitor clinically used for neonatal hyperbilirubinemia, has potential use as an anti-cancer agent. The pharmacological inhibition of HO activity caused a reduction in cell proliferation and migration of A549. SnMP treatment caused an increase in oxidative stress, as demonstrated by the upregulation of reactive oxygen species (ROS) and the depletion of glutathione (GSH) content. To support these data, Western blot analysis was performed to analyze glucose-6-phosphate dehydrogenase (G6PD), TP53-induced glycolysis and the apoptosis regulator (TIGAR), and the glutamate cysteine ligase catalytic (GCLC) subunit, as they represent the main regulators of the pentose phosphate pathway (PPP) and glutathione synthesis, respectively. NCI-H292, a subtype of the NSCLC cell line, did not respond to SnMP treatment, possibly due to low basal levels of HO-1, suggesting a cellular-dependent antitumorigenic effect. Altogether, our results suggest HO activity inhibition may represent a potential target for selective chemotherapy in lung cancer subtypes.


2020 ◽  
Author(s):  
Cuilan Sun ◽  
Weiwei Gao ◽  
Jiatao Liu ◽  
Hao Cheng ◽  
Jiqing Hao

Abstract Background: This study investigated the role of fibrinogen-like protein 1 (FGL1) in regulating gefitinib resistance of PC9/GR non-small cell lung cancer (NSCLC). Methods: The effect of different concentrations of gefitinib on cell proliferation were evaluated using the CCK-8 assay. FGL1 expression in the normal human bronchial epithelial cell line Beas-2B, as well as four lung tumor cell lines, H1975, A549, PC9, and PC9/GR, was investigated by using western blotting and qRT-PCR. FGL1 was knocked down using small interfering RNA to evaluate the effects of FGL1 on PC9 and PC9/GR. The correlation between FGL1 expression and gefitinib resistance was determined in vitro via CCK-8 and colony formation assays, and flow cytometry and in vivo via flow cytometry and immunohistochemistry. Results: FGL1 expression was significantly upregulated in non-small cell lung cancer cells with EGFR mutation and higher in the gefitinib-resistant NSCLC cell line PC9/GR than in the gefitinib-sensitive NSCLC cell line PC9. Further, FGL1 expression in PC9 and PC9/GR cells increased in response to gefitinib treatment in a dose-dependent manner. Knockdown of FGL1 suppressed cell viability, reduced the gefitinib IC50 value, and enhanced apoptosis in PC9 and PC9/GR cells upon gefitinib treatment. Mouse xenograft experiments showed that FGL1 knockdown in PC9/GR tumor cells enhanced the inhibitory and apoptosis-inducing actions of gefitinib. The potential mechanism of gefitinib in inducing apoptosis of PC9/GR cells involves inhibition of PARP1 and caspase 3 expression via suppression of FGL1.Conclusions: FGL1 confers gefitinib resistance in the NSCLC cell line PC9/GR by regulating the PARP1/caspase 3 pathway. Hence, FGL1 is a potential therapeutic target to improve the treatment response of NSCLC patients with acquired resistance to gefitinib.


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i7-i7
Author(s):  
Michael Offin ◽  
Morana Vojnic ◽  
Zebing Liu ◽  
Allan Lui ◽  
Evan Siau ◽  
...  

Abstract BACKGROUND: CNS metastases occur in 20–50% of lung cancer patients during their disease; leptomeningeal disease (LMD) representing 5–8%, classically carries a poor prognosis with a median overall survival ranging from 1–11 months. There is a paucity of patient-derived preclinical disease models using tumor cells isolated from the CSF. Models that faithfully recapitulate the biology of CNS tumors would offer new insights into the biology of the disease as well as provide the basis for developing more effective therapy. METHODS: To create more representative preclinical models to study LMD we isolated tumor cells from CSF of 5 patients with cytologically proven LMD and implanted the cells into the subcutaneous flank of immune-compromised mice. Where possible, cell lines were also generated from PDX tissues. Models were characterized by next generation sequencing (NGS), growth rates, expression of driver oncogenes and sensitivity to small molecule inhibitors. RESULTS: To date, one PDX (LUAD-0048A) and cell line model were successfully derived from CSF samples (NSCLC patient with MET amplification) and 4 are pending. MET amplification and mRNA over-expression were confirmed by quantitative PCR in the PDX tissue and the cell line. Western blot analysis indicated that over-expressed MET was phosphorylated in both PDX tissue and cell line. These results were confirmed by immunohistochemistry. Growth of LUAD-0048A cells were unaffected by 3 MET inhibitors (crizotinib, cabozantinib, glesatinib). Similarly, MET inhibitors did not induce apoptosis in the cells. CONCLUSION: LMD represents an aggressive metastatic event in lung cancer patients. Here we were able to successfully establish a PDX from the CSF of a patient with LMD and trial targeted therapies in vivo. Translational collaborations where patients with clinical suspicion of LMD undergo CSF sampling, NGS/ctDNA analysis, and PDX modeling are crucial in improving our understanding of this metastatic compartment and investigating novel treatment paradigms.


2020 ◽  
Author(s):  
Cuilan Sun ◽  
Weiwei Gao ◽  
Jiatao Liu ◽  
Hao Cheng ◽  
Jiqing Hao

Abstract Background: This study investigated the role of fibrinogen-like protein 1 (FGL1) in regulating gefitinib resistance of PC9/GR non-small cell lung cancer (NSCLC). Methods: The effect of different concentrations of gefitinib on cell proliferation were evaluated using the CCK-8 assay. FGL1 expression in the normal human bronchial epithelial cell line Beas-2B, as well as four lung tumor cell lines, H1975, A549, PC9, and PC9/GR, was investigated by using western blotting and qRT-PCR. FGL1 was knocked down using small interfering RNA to evaluate the effects of FGL1 on PC9 and PC9/GR. The correlation between FGL1 expression and gefitinib resistance was determined in vitro via CCK-8 and colony formation assays, and flow cytometry and in vivo via flow cytometry and immunohistochemistry.7 Results: FGL1 expression was significantly upregulated in non-small cell lung cancer cells with EGFR mutation and higher in the gefitinib-resistant NSCLC cell line PC9/GR than in the gefitinib-sensitive NSCLC cell line PC9. Further, FGL1 expression in PC9 and PC9/GR cells increased in response to gefitinib treatment in a dose-dependent manner. Knockdown of FGL1 suppressed cell viability, reduced the gefitinib IC50 value, and enhanced apoptosis in PC9 and PC9/GR cells upon gefitinib treatment. Mouse xenograft experiments showed that FGL1 knockdown in PC9/GR tumor cells enhanced the inhibitory and apoptosis-inducing actions of gefitinib. The potential mechanism of gefitinib in inducing apoptosis of PC9/GR cells involves inhibition of PARP1 and caspase 3 expression via suppression of FGL1.Conclusions: FGL1 confers gefitinib resistance in the NSCLC cell line PC9/GR by regulating the PARP1/caspase 3 pathway. Hence, FGL1 is a potential therapeutic target to improve the treatment response of NSCLC patients with acquired resistance to gefitinib.


2019 ◽  
Vol 20 (-1) ◽  
pp. 222-222
Author(s):  
Burcu Saygideger Demir ◽  
◽  
Sevilay Yilmaz ◽  
Alper Avci ◽  
Bilgehan Guzel ◽  
...  

Author(s):  
Weiwei Shen ◽  
Hailin Pang ◽  
Jiayu Liu ◽  
Jing Zhou ◽  
Feng Zhang ◽  
...  

Lung cancer is an aggressive malignancy with high morbidity and mortality. Chemotherapy has always been the principal treatment measure, but its acquired resistance becomes a critical problem. In the current study, we established a new docetaxel-resistant human non-small lung cancer (NSCLC) cell line A549/Docetaxel. The resistance index (RI) of A549/Docetaxel cells and A549 induced by TGF- to docetaxel were 8.91 and 11.5, respectively. Compared to the parental A549 cells, the multiplication time of A549/Docetaxel was prolonged, the proportion of the cell cycle in the S phase decreased while that in the G1 phase increased, and apoptotic rate was much lower. The morphology of the resistant cells eventuated epithelialmesenchymal transition (EMT), which was confirmed by the higher expression of fibronectin, vimentin (mesenchymal markers), and lower expression of E-cadherin (epithelial marker) at mRNA and proteins levels. Furthermore, the representative markers for docetaxel resistance were examined, including ABCB1 (MDR1), Bcl-2, Bax, and tubulin, to figure out the mechanisms of the resistance of A549/Docetaxel. In summary, we have established a typical docetaxel-resistant human NSCLC cell line A549/Docetaxel, and it was suggested that the multidrug resistance of A549/Docetaxel was related to EMT.


Sign in / Sign up

Export Citation Format

Share Document