epithelial marker
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 37)

H-INDEX

18
(FIVE YEARS 2)

Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6225
Author(s):  
Du-Bois Asante ◽  
Michael Morici ◽  
Ganendra R. K. A. Mohan ◽  
Emmanuel Acheampong ◽  
Isaac Spencer ◽  
...  

Detection of ovarian cancer (OC) circulating tumour cells (CTCs) is primarily based on targeting epithelial markers, thus failing to detect mesenchymal tumour cells. More importantly, the immune checkpoint inhibitor marker PD-L1 has not been demonstrated on CTCs from OC patients. An antibody staining protocol was developed and tested using SKOV-3 and OVCA432 OC cell lines. We targeted epithelial (cytokeratin (CK) and EpCAM), mesenchymal (vimentin), and OC-specific (PAX8) markers for detection of CTCs, and CD45/16 and CD31 were used for the exclusion of white blood and vascular endothelial cells, respectively. PD-L1 was used for CTC characterisation. CTCs were enriched using the ParsortixTM system from 16 OC patients. Results revealed the presence of CTCs in 10 (63%) cases. CTCs were heterogeneous, with 113/157 (72%) cells positive for CK/EpCAM (epithelial marker), 58/157 (37%) positive for vimentin (mesenchymal marker), and 17/157 (11%) for both (hybrid). PAX8 was only found in 11/157 (7%) CTCs. In addition, 62/157 (39%) CTCs were positive for PD-L1. Positivity for PD-L1 was significantly associated with the hybrid phenotype when compared with the epithelial (p = 0.007) and mesenchymal (p = 0.0009) expressing CTCs. Characterisation of CTC phenotypes in relation to clinical outcomes is needed to provide insight into the role that epithelial to mesenchymal plasticity plays in OC and its relationship with PD-L1.


2021 ◽  
Vol 11 (12) ◽  
pp. 1314
Author(s):  
Caitlin E. Filby ◽  
Katherine A. Wyatt ◽  
Sally Mortlock ◽  
Fiona L. Cousins ◽  
Brett McKinnon ◽  
...  

Endometrial organoids (EMO) are an important tool for gynecological research but have been limited by generation from (1) invasively acquired tissues and thus advanced disease states and (2) from women who are not taking hormones, thus excluding 50% of the female reproductive-aged population. We sought to overcome these limitations by generating organoids from (1) menstrual fluid (MF; MFO) using a method that enables the concurrent isolation of menstrual fluid supernatant, stromal cells, and leukocytes and (2) from biopsies and hysterectomy samples from women taking hormonal medication (EMO-H). MF was collected in a menstrual cup for 4–6 h on day 2 of menstruation. Biopsies and hysterectomies were obtained during laparoscopic surgery. Organoids were generated from all sample types, with MFO and EMO-H showing similar cell proliferation rates, proportion and localization of the endometrial basalis epithelial marker, Stage Specific Embryonic Antigen-1 (SSEA-1), and gene expression profiles. Organoids from different disease states showed the moderate clustering of epithelial secretory and androgen receptor signaling genes. Thus, MFO and EMO-H are novel organoids that share similar features to EMO but with the advantage of (1) MFO being obtained non-invasively and (2) EMO-H being obtained from 50% of the women who are not currently being studied through standard methods. Thus, MFO and EMO-H are likely to prove to be invaluable tools for gynecological research, enabling the population-wide assessment of endometrial health and personalized medicine.


2021 ◽  
Author(s):  
Han-ning Li ◽  
Hui-min Zhang ◽  
Xing-rui Li ◽  
Jun Wang ◽  
Tao Xu ◽  
...  

Abstract Background Papillary thyroid cancer (PTC) is the most common endocrine malignancy, despite marked achieves in recent decades, the mechanisms underlying the pathogenesis and progression for PTC are incomplete. Accumulating evidence shows that γ-glutamylcyclotransferase (GGCT), an enzyme participated in glutathione homeostasis that is elevated in multiple types of tumors, represents an attractive therapeutic target. Methods Bioinformatics, immunohistochemistry (IHC), qRT-PCR and western blot (WB) assays were used to determine the elevation of GGCT in PTC. The biological functions of GGCT were examined using CCK8, wound healing and transwell assays. Subcutaneous xenograft and tail vein pulmonary metastatic mouse models were constructed to determine the effect of GGCT on tumorigenicity and metastasis in vivo. The effect of miR-205-5p on GGCT and the relationship between these two molecules were examined by dual luciferase reporter assay, RNA-RNA pull down assay as well as the rescue experiments both in vitro and in vivo. The interaction between GGCT and CD44 was assessed by co-immunoprecipitation (Co-IP) and IHC assays. Results Our results showed that GGCT expression is upregulated in PTC, correlates with more aggressive clinicopathological characteristics and worse prognosis. GGCT knockdown inhibited the cell proliferation, migratory and invasion ability of PTC cells and reduced the expression of mesenchymal markers (N-cadherin, CD44, MMP-2 and MMP9) while increased epithelial marker (E-cadherin) in PTC cells. We confirmed binding of miR-205-5p on the 3’-UTR regions of GGCT and delivery of miR-205-5p reversed the pro-malignant capacity of GGCT both in vitro and in vivo. Lastly, we found GGCT interacted with and stabilized CD44 in PTC cells. Conclusions Our findings illustrate a novel signaling pathway, miR-205-5p/GGCT/CD44, that involves in the carcinogenesis and progression of PTC. Development of miR-205-mimics or GGCT inhibitors as potential therapeutics for PTC may have remarkable applications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuanyuan Han ◽  
Mao Jiang ◽  
Rongling He ◽  
Xin Lv ◽  
Xiaohua Liao ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is one of the most common and devastating interstitial lung diseases with poor prognosis. Currently, few effective drugs are available for IPF. Hence, we sought to explore the role of mefunidone (MFD), a newly synthesized drug developed by our team, in lung fibrosis. In this study, MFD was found to attenuate bleomycin (BLM) -induced lung fibrosis and inflammation in mice according to Ashcroft and alveolitis scoring. The protein contents and total cell counts in bronchoalveolar lavage fluids of BLM-treated mice were also lowered by MFD. Moreover, the elevation of TGF-β/Smad2 and phosphorylation of MAPK pathways was repressed by MFD. Additionally, MFD attenuated the swelling and vacuolization of mitochondria, lowered the ratio of apoptotic cells, restored the mitochondrial membrane potential, and reversed the expression of cleaved-caspase 3, Bcl-2 and Bax. Meanwhile, the level of epithelial marker, E-cadherin, was restored by MFD, while the levels of mesenchymal markers such as Snail and vimentin were down-regulated by MFD. Besides, MFD inhibited the expression of fibronectin and α-smooth muscle actin in TGF-β treated normal human lung fibroblasts. Thus, our findings suggested that MFD could ameliorate lung fibrosis, cell apoptosis and EMT potentially via suppression of TGF-β/Smad2 and MAPK pathways.


2021 ◽  
Author(s):  
Teng Teng ◽  
Camilla Teng ◽  
Vesa Kaartinen ◽  
Jeffrey O. Bush

AbstractTissue fusion is an oft-employed process in morphogenesis which often requires the removal of the epithelia intervening multiple distinct primordia to form one continuous structure. In the mammalian secondary palate, a midline epithelial seam (MES) forms between two palatal shelves and must be removed to allow mesenchymal confluence. Abundant apoptosis and cell extrusion in this epithelial seam support their importance in its removal. However, by genetically disrupting the intrinsic apoptotic regulators BAX and BAK within the MES, we find a complete loss of cell death and cell extrusion, but successful removal of the MES, indicating that developmental compensation enables fusion. Novel static and live imaging approaches reveal that the MES is removed through a unique form of collective epithelial cell migration in which epithelial trails and islands stream through the mesenchyme to reach the oral and nasal epithelial surfaces. These epithelial trails and islands begin to express periderm markers while retaining expression of the basal epithelial marker ΔNp63, suggesting their migration to the oral and nasal surface is concomitant with their differentiation to an epithelial intermediate. Live imaging reveals anisotropic actomyosin contractility within epithelial trails that drives their peristaltic movement, and genetic loss of non-muscle myosin IIA-mediated actomyosin contractility results in dispersion of epithelial collectives and dramatic failure of normal MES migration. These findings demonstrate redundancy between cellular mechanisms of morphogenesis and reveal a crucial role for a unique form of collective epithelial migration during tissue fusion.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yanfei Jia ◽  
Qian Feng ◽  
Bo Tang ◽  
Xiaodong Luo ◽  
Qiang Yang ◽  
...  

Decorin exhibits inhibitory effects in tumorigenesis in various types of cancers. The clinical characteristics of 42 patients with GBM were reviewed and analyzed. Lentiviral constructs for decorin overexpression and shRNA-mediated silencing were established for U87MG cells and T98G cells, respectively. The expressions of EMT- and autophagy-associated markers were detected in GBM cell lines. The migration and invasion of the glioma cells were assayed to reflect the malignant behavior of GBM. A mouse xenograft model was used to verify the effect of decorin on autophagy in vivo. Reduced expression of decorin in glioma tissues was associated with a poor survival of the patients. Decorin overexpression suppressed cell migration, invasion and attenuated EMT phenotype in glioma cell lines. Further study indicated that decorin inhibited EMT phenotype through the induction of autophagy. The mechanisms include inhibiting the activation of c-Met/Akt/mTOR signaling and regulating the expressions of mesenchymal markers including Slug, vimentin and Twist, and epithelial marker E-cadherin. In addition, decorin overexpression in a mice model can also suppress the GBM invasion and EMT phenotype. In conclusion, decorin suppresses invasion and EMT phenotype of glioma by inducing autophagy via c-Met/Akt/mTOR axis.


Author(s):  
Ziyao Ren ◽  
Yonghua Hu ◽  
Jian Chen ◽  
Lanying Jin

IntroductionThe microRNA-200 (miR-200) family and sex-determining region Y-box 4 (SOX4) could regulate EMT phenotypes, which is important to the process of tumor pathological. This study explored the association of miR-200a with SOX4 in transforming growth factor (TGF)-β-induced EMT of OC cells.Material and methodsFor the in vitro experiments, hunam CO cells subjected to TGF-β was used to induce EMT; the activity of miR-200a was selectively inhibited or overexpressioned by miR-200a inhibitor and mimics, respectively. Small interfering RNAs against SOX4 (si-SOX4) were used to inhibit SOX4 expression in human OC cell lines.ResultsDecreased miR-200a and increased SOX4 levels were detected in patients with OC and these changes were closely related to the International Federation of Gynaecology and Obstetrics stage, ovarian tumor biomarker CA125 level, lymph node status and tumor size. The TGF-β-treated cells increased the miR-200a level, decreased the SOX4 level and prompted EMT properties, including a reduction in epithelial marker (e-cadherin), induction in interstitial markers (vimentin and n-cadherin), and enhancement of proliferation, migration and invasion. The OC cells were transducted with miR-200a mimic and the overexpression cells were subsequently treated with TGF-β, decreased SOX4 expression and EMT properties were detected. Also, in miR-200a inhibited cells, TGF-β increased SOX4 expression and EMT properties. Moreover, SOX4 silencing weakened the effect of the miR-200a inhibitor.ConclusionsOverall, these results provide a link between miR-200a and SOX4 in OC pathogenesis and indicate that miRNA-200a inhibits EMT by downregulating SOX4 expression in human OC cells.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1742
Author(s):  
Hélène Barthel ◽  
Christian Darne ◽  
Laurent Gaté ◽  
Athanase Visvikis ◽  
Carole Seidel

In the field of nanotechnology, the use of multi-walled carbon nanotubes (MWCNTs) is growing. Pulmonary exposure during their production, use, and handling is raising concerns about their potential adverse health effects. The purpose of this study is to assess how the physical characteristics of MWCNTs, such as diameter and/or length, can play a role in cellular toxicity. Our experimental design is based on the treatment of human bronchial epithelial cells (BEAS-2B) for six weeks with low concentrations (0.125–1 µg/cm2) of MWCNTs having opposite characteristics: NM-403 and Mitsui-7. Following treatment with both MWCNTs, we observed an increase in mitotic abnormalities and micronucleus-positive cells. The cytotoxic effect was delayed in cells treated with NM-403 compared to Mitsui-7. After 4–6 weeks of treatment, a clear cellular morphological change from epithelial to fibroblast-like phenotype was noted, together with a change in the cell population composition. BEAS-2B cells underwent a conversion from the epithelial to mesenchymal state as we observed a decrease in the epithelial marker E-cadherin and an increased expression of mesenchymal markers N-cadherin, Vimentin, and Fibronectin. After four weeks of recovery, we showed that the induced epithelial-mesenchymal transition is reversible, and that the degree of reversibility depends on the MWCNT.


Oncogene ◽  
2021 ◽  
Author(s):  
Yiying Li ◽  
He Fei ◽  
Qiwang Lin ◽  
Fan Liang ◽  
Yanan You ◽  
...  

Abstract Peritoneal metastasis is a common issue in the progression of high-grade serous ovarian cancers (HGSOCs), yet the underlying mechanism remains unconfirmed. We demonstrated that ZEB2, the transcription factor of epithelial–mesenchymal transition (EMT), was upregulated in ascites cells from HGSOC patients and in CD133+ cancer stem-like cells (CSLCs) from epithelial ovarian cancer (EOC) cell lines. SiRNA-mediated knockdown of ZEB2 in EOC cells decreased the percentage of CSLCs and reduced the colony forming potential, cell invasion capacity and expression of pluripotent genes Oct4 and Nanog. Inhibition of ZEB2 also induced cellular apoptosis and impacted the tumorigenicity of ovarian CSLCs. The mesenchymal markers N-cadherin and vimentin were downregulated, while the epithelial marker E-cadherin was upregulated after ZEB2 knockdown. MiR-200a, a molecule that downregulates ZEB2, had the opposite effect of ZEB2 expression in EOC-CSLCs. A retrospective study of 98 HGSOC patients on the relationship of ascites volume, pelvic and abdominal metastasis, International Federation of Gynecology and Obstetrics (FIGO) stage and the malignant involvement of abdominal organs and lymph nodes was performed. Patients with high expression of ZEB2 in tumour tissues had a higher metastasis rate and a poorer prognosis than those with low expression. The parameters of ZEB2 expression and ascites volume were strongly linked with the prognostic outcome of HGSOC patients and had higher hazard ratios. These findings illustrated that ZEB2 facilitates the invasive metastasis of EOC-CSLCs and can predict peritoneal metastasis and a poor prognosis in HGSOC patients.


Sign in / Sign up

Export Citation Format

Share Document