scholarly journals Photocatalytic Properties of Copper Nitride/Molybdenum Disulfide Composite Films Prepared by Magnetron Sputtering

Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 79 ◽  
Author(s):  
Liwen Zhu ◽  
Chenyang Gong ◽  
Jianrong Xiao ◽  
Zhiyong Wang

Cu3N/MoS2 composite films were prepared by magnetron sputtering under different preparation parameter, and their photocatalytic properties were investigated. Results showed that the composite films surface was uniform and had no evident cracks. When the sputtering power of MoS2 increased from 2 W to 8 W, the photocatalytic performance of the composite films showed a trend of increasing first and then decreasing. Among these films, the composite films with MoS2 sputtering power of 4 W showed the best photocatalytic degradation performance. The photocatalytic degradation rate of methyl orange at 30 min was 98.3%, because the MoS2 crystal in the films preferentially grew over the Cu3N crystal, thereby affecting the growth of the Cu3N crystal. The crystallinity of the copper nitride also increased. During photocatalytic degradation, the proper amount of MoS2 reduced the band gap of Cu3N, and the photogenerated electron hole pairs were easily separated. Thus, the films produces additional photogenerated electrons and promotes the degradation reaction of the composite films on methyl orange solution.

2021 ◽  
Author(s):  
Xianzhen Diao ◽  
Jin XU ◽  
Yufei WANG

Nanometer TiO2 photocatalysts were prepared by the sol–gel method. The catalysts were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and other techniques. Methyl orange solution was used for the degradation of the organic material and ultrasonic technology was used to determine the photocatalytic performance of the catalysts. The results show that the photocatalytic performance of the Ni-N-TiO2 is clearly improved under ultrasonic conditions. The TiO2 photocatalytic degradation effect is optimal at a catalyst concentration of 0.3 g/L, an initial concentration of the organic matter of 0.03 mmol/L, a nickel-doping amount of 2 mol %, and a nitrogen-doping amount of 15 mol %. The use of ultrasound technology in combination with photocatalysis has a positive effect and results in a TiO2 degradation rate of methyl orange of 95 % after 3 h.


Coatings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 9 ◽  
Author(s):  
Chien-Jen Tang ◽  
Ju-Liang He ◽  
Cheng-Chung Jaing ◽  
Chen-Jui Liang ◽  
Ching-Hung Chou ◽  
...  

In this study, WO3–Nb2O5 electrochromic films and an ITO/WO3–Nb2O5/Nb2O5/NiVOx/ITO all-solid-state electrochromic device were deposited using fast-alternating bipolar-pulsed magnetron sputtering using tungsten and niobium targets. The influence of different sputtering powers from the niobium target on the refractive index, extinction coefficient, optical modulation, coloration efficiency, reversibility, and durability of the WO3–Nb2O5 films is discussed. The aim of this work is to find the suitable Nb proportion to increase durability and less negative effect in the electrochromic performance of Nb2O5-doped WO3 films. The lifetime of the WO3–Nb2O5 films is 4 times longer than pure WO3 films when the sputtering power of the Nb target is higher than 250 W. The results show that WO3–Nb2O5 composite films used for an all-solid-state electrochromic device can sustain over 3 × 104 repeated coloring and bleaching cycles while the transmission modulations can be kept above 20%. The coloring and bleaching response times are 7.0 and 0.7 s, respectively.


2013 ◽  
Vol 781-784 ◽  
pp. 2249-2252 ◽  
Author(s):  
Sanni O. Saheed ◽  
Sekomeng J. Modise ◽  
Allworth M. Sipamla

Titania dispersed on dealuminated Clinoptilotile (TiO2/HCP) was synthesized and characterized by Scanning Electron Microscope (SEM). Supporting characterization techniques reveals partly dispersion of TiO2 within the cavities of dealuminated Clinoptilotile (HCP) and TiO2 exist as nanoparticles or clusters on the HCP surface ascribed to lower loading of TiO2. The photocatalytic degradation of methyl orange solution was conducted under UV-irradiation in the presence of TiO2/HCP. The photocatalytic degradation of methyl orange in the presence of the photocatalyst was optimized at lower loading of TiO2, at a lower initial dye concentration (30 ppm), calcination temperature of 873K and nitrate ion accelerates degradation activities of methyl orange. Kinetic studies depict the photocatalytic degradation of methyl orange follows the pseudo-first order reaction.


2014 ◽  
Vol 662 ◽  
pp. 3-6
Author(s):  
Xue Fei Lei ◽  
Chen Chen ◽  
Xing Li ◽  
Xiang Xin Xue ◽  
He Yang

The paper preliminary studied the photocatalytic efficiency of the filter residue of the acidolysis of high titanium slag (RAHTS) with hydrochloric acid, and explored the photocatalytic efficiency on the acid methyl orange solution under the mercury lamp irradiation. With RAHTS performing as a raw material to react with hydrochloric acid, and then the substance content, nature and catalytic efficiency of the filter residues were examined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and photocatalytic reaction apparatus. Through the experimental investigation, the photocatalytic degradation efficiency on the methyl orange of the filter residues increased with the acid-sludge ratio, reaction time, reaction temperature, and the concentration of hydrochloric acid. When the temperature was 100°C, the reaction time was 4 h, the concentration of the hydrochloric acid was 6 mol/L, the acid-sludge ratio was 1, the filter residues showed a best photocatalytic degradation efficiency. Under that experimental condition, the degradation rate was as high as 85.1%.


Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 179 ◽  
Author(s):  
Julie Murcia ◽  
Ángela Cely ◽  
Hugo Rojas ◽  
María Hidalgo ◽  
José Navío

In this study, commercial and lab-prepared TiO2 were modified by fluorination and platinum photodeposition; and the effect of these modifications over the physicochemical and photocatalytic properties of TiO2 was evaluated. It was found that F and Pt addition leads to the modification of the optical and textural properties of TiO2. The materials prepared were tested in the photocatalytic degradation of different organic dyestuffs such as methylene blue (MB) and methyl orange (MO); the degradation of commercial anilines employed in the staining of natural fibers was also evaluated. Photocatalysis was also studied in this work as an eco-friendly treatment of wastewater coming from handicrafts factories. In general it was observed that the effectiveness of the photocatalytic treatment strongly depends on the substrate to be degraded, thus, fluorinated and platinized commercial Titania (Pt-F-P25) showed the best photocatalytic performance in the MB and MO photodegradation and in contrast, in the case of the anilines the highest degradation was obtained over commercial TiO2 fluorinated (F-P25). These results can be explained by differences observed in the structure and in the adsorption of these dyestuffs over the photocatalysts surfaces. F-P25 photocatalyst also demonstrated to be the best material for the treatment of real wastewater coming from handicrafts factories.


NANO ◽  
2020 ◽  
Vol 15 (04) ◽  
pp. 2050042
Author(s):  
Jieqiong Wang ◽  
Jie Yang ◽  
Jian Fang ◽  
Yuhang Li ◽  
Hongyuan Zhang ◽  
...  

The WSe2/g-C3N4 (graphite carbon nitride) composite with photocatalytic properties was synthesized using a hydrothermal method. This synthesis pathway can be characterized by being simple, inexpensive and nonpolluting, integrating the concept of green chemistry. The WSe2/g-C3N4 composite could effectively degrade methyl orange solution under visible light irradiation. The decolorization experiment of methyl orange solution shows that the degradation rate of the 30[Formula: see text]wt.% WSe2/g-C3N4 composite can reach 98.7% after 100[Formula: see text]min of illumination, while the degradation rate of pure g-C3N4 was only 87.6% under the same conditions. This can be attributed to the fact that the combination of WSe2 and g-C3N4 nanosheets can increase the number of active binding sites, increasing the rate of charge separation and transport ability, decreasing the recombination rate of the photogenerated electron–hole pairs. Therefore, the WSe2/g-C3N4 composite will have potential development as a new material with low cost, easy synthesis and excellent performance in photocatalytic degradation of water pollution.


2009 ◽  
Vol 7 (10) ◽  
pp. 956-959 ◽  
Author(s):  
孟凡明 Fanming Meng ◽  
曹铃 Ling Cao ◽  
宋学萍 Xueping Song ◽  
孙兆奇 Zhaoqi Sun

Sign in / Sign up

Export Citation Format

Share Document