ultrasound application
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 65)

H-INDEX

23
(FIVE YEARS 4)

Author(s):  
Katja Döring ◽  
Swetlana Sperling ◽  
Milena Ninkovic ◽  
Henning Schroeder ◽  
André Fischer ◽  
...  

AbstractNimodipine prevents cerebral vasospasm and improves functional outcome after aneurysmal subarachnoid hemorrhage (aSAH). The beneficial effect is limited by low oral bioavailability of nimodipine, which resulted in an increasing use of nanocarriers with sustained intrathecal drug release in order to overcome this limitation. However, this approach facilitates only a continuous and not an on-demand nimodipine release during the peak time of vasospasm development. In this study, we aimed to assess the concept of controlled drug release from nimodipine-loaded copolymers by ultrasound application in the chicken chorioallantoic membrane (CAM) model. Nimodipine-loaded copolymers were produced with the direct dissolution method. Vasospasm of the CAM vessels was induced by means of ultrasound (Physiomed, continuous wave, 3 MHz, 1.0 W/cm2). The ultrasound-mediated nimodipine release (Physiomed, continuous wave, 1 MHz, 1.7 W/cm2) and its effect on the CAM vessels were evaluated. Measurements of vessel diameter before and after ultrasound-induced nimodipine release were performed using ImageJ. The CAM model could be successfully carried out in all 25 eggs. After vasospasm induction and before drug release, the mean vessel diameter was at 57% (range 44–61%) compared to the baseline diameter (set at 100%). After ultrasound-induced drug release, the mean vessel diameter of spastic vessels increased again to 89% (range 83–91%) of their baseline diameter, which was significant (p = 0.0002). We were able to provide a proof of concept for in vivo vasospasm induction by ultrasound application in the CAM model and subsequent resolution by ultrasound-mediated nimodipine release from nanocarriers. This concept merits further evaluation in a rat SAH model. Graphical abstract


Clinical Pain ◽  
2021 ◽  
Vol 20 (2) ◽  
pp. 74-85
Author(s):  
Yong-Soon Yoon ◽  
Jung-Hoo Lee ◽  
Eun-Sil Kim ◽  
Kwang Jae Lee, RMSK

2021 ◽  
Vol 65 (4) ◽  
pp. 31-37
Author(s):  
V. Verebová ◽  
J. Staničová

Abstract The application of ultrasonic methods in veterinary medicine, especially in the therapy of dogs, is the main objective of this study. We compared the frequency of therapeutic ultrasound using in rehabilitation as well as in microsurgical interventions of dogs in Slovakian and Hungarian veterinary practices. Regarding to the evaluation of survey realized in restricted regions, the ultrasound therapies and interventions are currently used in Slovakia less than in Hungary. Our study could start a change in this unfavourable aspect in Slovakian veterinary medicine and contribute to a better promotion of ultrasound application in the therapy of animals.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1609
Author(s):  
Mari Carmen Gómez-de Frutos ◽  
Fernando Laso-García ◽  
Iván García-Suárez ◽  
Luke Diekhorst ◽  
Laura Otero-Ortega ◽  
...  

Ultrasound is a noninvasive technique that provides real-time imaging with excellent resolution, and several studies demonstrated the potential of ultrasound in acute ischemic stroke monitoring. However, only a few studies were performed using animal models, of which many showed ultrasound to be a safe and effective tool also in therapeutic applications. The full potential of ultrasound application in experimental stroke is yet to be explored to further determine the limitations of this technique and to ensure the accuracy of translational research. This review covers the current status of ultrasound applied to monitoring and treatment in experimental animal models of stroke and examines the safety, limitations, and future perspectives.


Author(s):  
hanieh musavian ◽  
Tariq M. Butt ◽  
Aaron Ormond ◽  
David Keeble ◽  
Niels H. Krebs

Combined steam-ultrasound process was investigated for decontamination of freshly slaughtered broilers. Combined steam-ultrasound was delivered simultaneously through specially designed nozzles. The nozzles were installed inside of a constructed machine that allowed for continuous processing. The aim of this study was to evaluate the decontamination effect of the steam- ultrasound application with a capacity of 10,500 birds/hour on naturally contaminated broilers, using three different skin sampling areas for microbial analysis (back, breast and the neck skin). Microbial analysis of Campylobacter , Enterobacteriaceae and Total Viable Count (TVC), was performed pre- and -post steam-ultrasound treatment. A total of 648 skin samples were analyzed for Campylobacter and a total of 216 samples were analyzed for Enterobacteriaceae and TVC. R esults showed significant (p<0.001) Campylobacter reductions of 0.8 log, 1.1 log and 0.7 log, analyzed from skin samples taken from the back, breast and the neck, respectively. Significant reductions of Enterobacteriaceae (p<0.001) by 1.6 log, 1.9 log and 1.1 log and significant reductions of TVC (p<0.001) by 2.0 log, 2.4 log and 1.3 log were found on back, breasts and neck, respectively. Refrigeration effect on Campylobacter numbers pre- and post- steam-ultrasound treatment and incubation at 4°C for eight days was determined in a small trial with 12 samples. Results showed significant (p<0.01) reductions of 0.9 log analyzed on breast skin samples, and 0.7 log reduction (p<0.05) on neck skin samples. Results in this study showed that significant bacteria reduction was achieved on three different surface areas on broilers at a slaughter-speed of 10,500b/h with temperatures over 80°C. The rapid treatment of less than 1.5s exposure time per bird chamber, makes this technology potentially suitable for modern and fast poultry processing lines.


2021 ◽  
pp. 108201322110496
Author(s):  
H Tavsanli ◽  
M Aydin ◽  
Z A Ede ◽  
R Cibik

The aim of the present study was to investigate the detrimental effect of ultrasound application, as an alternative to pasteurization, on raw goat milk microorganisms and some food pathogens including Brucella melitensis. For this purpose, six different ultrasound applications with a power of 20 kHz at 100%, 50% and 10% amplitudes with or without pulsation were practiced. Colour changes as an increase in brightness (L-value) and decrease in yellow colour value (b-value) were determined in either pasteurized or ultrasonified groups. The most efficient detrimental effect on bacteria was obtained at 100% amplitudes (III and IV group). In these groups, decrease of TAMB, coliforms, streptococci, lactobacilli, yeast and mould counts were 6.52, 6.27, 5.31, 5.61, 5.27 and 4.02 log cfu/ml respectively in raw milk. Inactivation of food pathogens Brucella melitensis type 3, Salmonella Typhimirium, Escherichia coli, Listeria monocytogenes and methicilin resistant Staphylococcus aureus inoculated in goat milk was approximately 99%, which was as efficient as HTST and LTLT pasteurization process. Consequently, ultrasound applications can be an alternative to heat processes in dairy since effective bacterial inactivation could be attained in a relatively economic and environmentally friendly way.


2021 ◽  
Author(s):  
Xianzhen Diao ◽  
Jin XU ◽  
Yufei WANG

Nanometer TiO2 photocatalysts were prepared by the sol–gel method. The catalysts were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and other techniques. Methyl orange solution was used for the degradation of the organic material and ultrasonic technology was used to determine the photocatalytic performance of the catalysts. The results show that the photocatalytic performance of the Ni-N-TiO2 is clearly improved under ultrasonic conditions. The TiO2 photocatalytic degradation effect is optimal at a catalyst concentration of 0.3 g/L, an initial concentration of the organic matter of 0.03 mmol/L, a nickel-doping amount of 2 mol %, and a nitrogen-doping amount of 15 mol %. The use of ultrasound technology in combination with photocatalysis has a positive effect and results in a TiO2 degradation rate of methyl orange of 95 % after 3 h.


Sign in / Sign up

Export Citation Format

Share Document