degradation efficiency
Recently Published Documents


TOTAL DOCUMENTS

432
(FIVE YEARS 224)

H-INDEX

26
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Tanmaya Nayak ◽  
Arpan Ghosh ◽  
Sourav Das ◽  
Tapan Kumar Adhya ◽  
Paritosh Patel ◽  
...  

Chlorpyrifos (CP) is a widely used insecticide that has been used extensively, contributing towards a negative impact on public health concerns and associated ecosystems. Bioremediation is one of the key biological methods used for reducing these environmental toxicants. The present study examined the effectiveness of a combined process including solar photo-Fenton process followed by bacterial degradation using Ochrobactrum sp. CPD-03 for effective CP degradation in wastewater. Results showed that solar photo-Fenton treatment had CP degradation efficiency of ~42% in 4 h with a final degradation efficiency of ~92% in 96 h upon combined bacterial degradation. Simultaneous survivability of zebrafish (Danio rerio) was also studied during CP degradation. Compared to control, adult zebrafishes showed increased survivability following the addition of CPD-03 in water resulting a reduced CP concentration. CP toxicity in wastewater had caused acetylcholinesterase inhibition in zebrafish; however, this inhibition is due to absence of CP degrading bacteria. Therefore, a combined approach would influence for regulating CP degradation in wastewater along with simultaneous survival of Danio rerio.


2022 ◽  
Author(s):  
Mohammad Saeed Vasheghani Farahani ◽  
Maryam Nikzad ◽  
Mohsen Ghorbani

Abstract In this work, a photocatalytic nanocomposite, Fe-doped ZnO/nanocellulose, was synthesized using an in-situ method and examined for methylene blue (MB) degradation. For this purpose, pure ZnO (PZ) was synthesized by the chemical precipitation method and then subjected to Fe+3 doping with different concentrations of Fe3+ (1, 3, and 5 mol%). The PZ and Fe-doped ZnO (FZ) samples were characterized using several standard analyses. UV-vis DRS analysis was also used to investigate the effect of Fe3+ doping on the bandgap of PZ. The doping of Fe3+ enhanced the photocatalytic activity of ZnO under visible light. The degradation efficiency of FZ samples (> 50%) was enhanced compared to the pristine ZnO (36.91%) during the same period. The catalyst with the highest degradation efficiency (94.21%) was then conjugated with broom corn stalk-derived nanocellulose (NC) at varying NC/ Zn2+ molar ratios (0.1, 0.2, 0.3, and 0.4) and characterized by various analyses. The NC enhanced the hydroxyl group at the surface of the nanocomposite, consequently improved the photocatalytic performance of the synthesized samples. The ability of the optimized photocatalyst for MB degradation was assessed. The effect of operating parameters such as pH, catalyst dosage, and initial MB concentration was investigated and degradation efficiency of 98.84% was achieved at the optimum condition. Besides, photocatalyst regeneration study indicated the great photocatalytic performance of this nanocomposite with no loss in its degradation efficiency. The facile synthesis and fast degradation rate of this nanocomposite make it a promising candidate for real-world wastewater treatment.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 361
Author(s):  
Joanna B. Kisała ◽  
Gerald Hörner ◽  
Adriana Barylyak ◽  
Dariusz Pogocki ◽  
Yaroslav Bobitski

In present work, we examine the photocatalytic properties of S-doped TiO2 (S1, S2) compared to bare TiO2 (S0) in present work. The photocatalytic tests were performed in alkaline aqueous solutions (pH = 10) of three differently substituted phenols (phenol (I), 4,4′-isopropylidenebisphenol (II), and 4,4′-isopropylidenebis(2,6-dibromophenol) (III)). The activity of the catalysts was evaluated by monitoring I, II, III degradation in the reaction mixture. The physicochemical properties (particle size, ζ-potential, Ebg, Eu, E0cb, E0vb, σo, KL) of the catalysts were established, and we demonstrated their influence on degradation reaction kinetics. Substrate degradation rates are consistent with first-order kinetics. The apparent conversion constants of the tested compounds (kapp) in all cases reveal the sulfur-loaded catalyst S2 to show the best photocatalytic activity (for compound I and II S1 and S2 are similarly effective). The different efficiency of photocatalytic degradation I, II and III can be explained by the interactions between the catalyst and the substrate solution. The presence of bromine substituents in the benzene ring additionally allows reduction reactions. The yield of bromide ion release in the degradation reaction III corresponds to the Langmuir constant. The mixed oxidation-reduction degradation mechanism results in higher degradation efficiency. In general, the presence of sulfur atoms in the catalyst network improves the degradation efficiency, but too much sulfur is not desired for the reduction pathway.


Author(s):  
Zhenran Wang ◽  
Jiewen Deng ◽  
Yunlan Peng ◽  
Shixiang Wang ◽  
Yongsheng Fu ◽  
...  

Author(s):  
Olga Długosz ◽  
Anita Staroń ◽  
Paulina Brzoza ◽  
Marcin Banach

AbstractThe paper presents the photodegradation process of one-, two- and three-component dye mixtures by ZnO-SnO2 nanoparticles. After 60 min of running the processes, the dye removal efficiencies of 76.44, 72.69, 62.43, 77.00 and 92.46% for MB, RB, TB, MO and YQ degradation, respectively, were obtained. For binary and ternary systems, dye removal efficiencies for all cases exceeded 70%. When the binary and ternary dye mixtures were tested, the photodegradation efficiencies of ZnO-SnO2 were similar to those of the single mixtures, indicating that this material could be used in industrial applications in the future. The focus of the study was to investigate the effect of sorption on photodegradation efficiency and the presence of both cationic and anionic dyes on their degradation efficiency under UV light. The significance of the effect of sorption on the degradation efficiency allowing the interaction of the catalyst with the dyes removed was confirmed. The main factor influencing sorption and consequently photocatalysis was the nature of the dye. It was confirmed that the positively charged ZnO-SnO2 surface effectively sorbs the dyes and causes their degradation.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7686
Author(s):  
Peter A. Ajibade ◽  
Abimbola E. Oluwalana

We present the preparation of octadecylamine-capped ZnS quantum dots from bis(morpholinyldithiocarbamato)Zn(II) complex. The complex was thermolyzed at 130 °C in octadecylamine at different times, to study the effect of reaction time on the morphological and photocatalytic properties of the ZnS quantum dots. Powder X-ray diffraction patterns confirmed a hexagonal wurtzite crystalline phase of ZnS, while HRTEM images showed particle sizes of about 1–3 nm, and energy band gaps of 3.68 eV (ZnS–1), 3.87 eV (ZnS–2), and 4.16 eV (ZnS–3) were obtained from the Tauc plot for the ZnS nanoparticles. The as-prepared ZnS were used as photocatalysts for the degradation of brilliant green, rhodamine B, and binary dye consisting of a mixture of brilliant green-rhodamine B. The highest photocatalytic degradation efficiency of 94% was obtained from ZnS–3 with low photoluminescence intensity. The effect of catalytic dosage and pH of the dyes solution on the photocatalytic process shows that pH 8 is optimal for the degradation of brilliant green, while pH 6.5 is the best for photocatalytic degradation of rhodamine B. The degradation of the binary dyes followed the same trends. The effect of catalytic dosage shows that 1 mg mL−1 of the ZnS nano-photocatalyst is the optimum dosage for the degradation of organic dyes. Reusability studies show that the ZnS quantum dots can be reused five times without a significant reduction in degradation efficiency.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1543
Author(s):  
António B. Mapossa ◽  
Washington Mhike ◽  
José L. Adalima ◽  
Shepherd Tichapondwa

Heterogeneous photocatalysis using titanium dioxide (TiO2) and zinc oxide (ZnO) has been widely studied in various applications, including organic pollutant remediation in aqueous systems. The popularity of these materials is based on their high photocatalytic activity, strong photosensitivity, and relatively low cost. However, their commercial application has been limited by their wide bandgaps, inability to absorb visible light, fast electron/hole recombination, and limited recyclability since the nanomaterial is difficult to recover. Researchers have developed several strategies to overcome these limitations. Chief amongst these is the coupling of different semi-conductor materials to produce heterojunction nanocomposite materials, which are both visible-light-active and easily recoverable. This review focuses on the advances made in the development of magnetic ferrite-based titanium oxide and zinc oxide nanocomposites. The physical and magnetic properties of the most widely used ferrite compounds are discussed. The spinel structured material had superior catalytic and magnetic performance when coupled to TiO2 and ZnO. An assessment of the range of synthesis methods is also presented. A comprehensive review of the photocatalytic degradation of various priority organic pollutants using the ferrite-based nanocomposites revealed that degradation efficiency and magnetic recovery potential are dependent on factors such as the chemical composition of the heterojunction material, synthesis method, irradiation source, and structure of pollutant. It should be noted that very few studies have gone beyond the degradation efficiency studies. Very little information is available on the extent of mineralization and the subsequent formation of intermediate compounds when these composite catalysts are used. Additionally, potential degradation mechanisms have not been adequately reported.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3561
Author(s):  
Xia Meng ◽  
Zhongming Liu ◽  
Shoujuan Wang ◽  
Fangong Kong

In this study, an ultrasound Fenton-like sponge iron system was used to enhance the degradation efficiency for chloramphenicol (CAP). Three single-factor experiments of reaction pH, hydrogen peroxide (H2O2) concentration, and sponge iron (Fe) concentration were used to explore the impact on CAP degradation efficiency. The response surface method revealed the interactions between various factors. The degradation efficiency for CAP was as high as 99.97% at pH = 3, 3.19 mmol/L H2O2, and a sponge iron concentration of 2.26 g/L. The degradation rate for CAP was significantly reduced upon the addition of some inorganic salts, mainly due to the quenching of OH radicals. Gram-negative (G(−)) Escherichia coli and Gram-positive (G(+)) Staphylococcus aureus were used to evaluate the changes in the antibacterial activity of CAP. Finally, gas chromatography/mass spectrometry (GC-MS) was used to identify the degradation products and the degradation path for the products was proposed based on the detected products.


Sign in / Sign up

Export Citation Format

Share Document