scholarly journals Prediction and Analysis of the Grit Blasting Process on the Corrosion Resistance of Thermal Spray Coatings Using a Hybrid Artificial Neural Network

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1274
Author(s):  
Dongdong Ye ◽  
Zhou Xu ◽  
Jiabao Pan ◽  
Changdong Yin ◽  
Doudou Hu ◽  
...  

Grit blasting as a pretreatment process for the substrate surface before thermal spraying is of great importance for assuring the service performance of thermal spraying coatings. In this work, a novel hybrid artificial neural network (ANN) was presented to optimize the grit blasting process to improve the structural properties and corrosion resistance performance of thermal spraying coatings. Different grit blasting process parameters were combined to pretreat the substrate surface, and the corresponding surface roughness, interface adhesion strength and corrosion resistance performance were obtained. Hence, a backpropagation (BP) neural network model optimized by the genetic algorithm (GA) was presented to address the poor regression roughness and accuracy of the traditional fitting models; the grit blasting processing parameters were utilized as the inputs for the GA–BP model; the structural properties and the corrosion resistance performance were used as the outputs. The correlation coefficient R reached and exceeded 0.90, and three error values were less than 1.75 on the prediction of the service performance of random samples. All these indicators demonstrated convincingly that the obtained hybrid artificial neural network models possessed good prediction performance, and this innovative and time-saving grit blasting process optimization approach could be potentially employed to improve the comprehensive service performance of thermal spraying coatings.

Author(s):  
Sandip K Lahiri ◽  
Kartik Chandra Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and genetic algorithm technique (ANN-GA) for efficient tuning of ANN meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN-GA method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters.


Author(s):  
Wan Nazirah Wan Md Adnan ◽  
Nofri Yenita Dahlan ◽  
Ismail Musirin

<span lang="EN-US">This paper aims to develop a hybrid artificial neural network for Option C Measurement and Verification model to predict monthly building energy consumption. In this work, baseline energy model development using artificial neural networks embedded with artificial bee colony optimization and cross validation technique for a small dataset were considered. Artificial bee colony optimization with coefficient of correlation fitness function was used in optimizing the neural network training process and selecting the optimal values of initial weights and biases. Working days, class days and cooling degree days were used as input meanwhile monthly electricity consumption as an output of artificial neural network. The results indicated that this hybrid artificial neural network model provided better prediction results compared to the other model. The best model with the highest value of coefficient of correlation was selected as the baseline model hence is used to determine the saving. </span>


Sign in / Sign up

Export Citation Format

Share Document