Development of a Hybrid Artificial Neural Network and Genetic Algorithm Model for Regime Identification of Slurry Transport in Pipelines

Author(s):  
Sandip K Lahiri ◽  
Kartik Chandra Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and genetic algorithm technique (ANN-GA) for efficient tuning of ANN meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN-GA method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters.

2010 ◽  
Vol 16 (4) ◽  
pp. 329-343 ◽  
Author(s):  
Sandip Lahiri ◽  
K.C. Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and differential evolution technique (ANN - DE) for efficient tuning of ANN Meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN - DE method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters. .


Author(s):  
Hadi Salehi ◽  
Mosayyeb Amiri ◽  
Morteza Esfandyari

In this work, an extensive experimental data of Nansulate coating from NanoTechInc were applied to develop an artificial neural network (ANN) model. The Levenberg–Marquart algorithm has been used in network training to predict and calculate the energy gain and energy saving of Nansulate coating. By comparing the obtained results from ANN model with experimental data, it was observed that there is more qualitative and quantitative agreement between ANN model values and experimental data results. Furthermore, the developed ANN model shows more accurate prediction over a wide range of operating conditions. Also, maximum relative error of 3% was observed by comparison of experimental and ANN simulation results.


2009 ◽  
Vol 15 (2) ◽  
pp. 103-117 ◽  
Author(s):  
S.K. Lahiri ◽  
K.C. Ghanta

This paper describes a robust hybrid artificial neural network (ANN) methodology which can offer a superior performance for the important process engineering problems. The method incorporates a hybrid artificial neural network and differential evolution technique (ANN-DE) for the efficient tuning of ANN meta parameters. The algorithm has been applied for the prediction of the hold up of the solid liquid slurry flow. A comparison with selected correlations in the literature showed that the developed ANN correlation noticeably improved the prediction of hold up over a wide range of operating conditions, physical properties, and pipe diameters.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
S.K. Lahiri ◽  
Kartik Chandra Ghanta

This paper describes a robust hybrid artificial neural network (ANN) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid artificial neural network and differential evolution technique (ANN-DE) for efficient tuning of ANN meta parameters. The algorithm has been applied for the prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the literature showed that the developed ANN correlation noticeably improved the prediction of pressure drops over a wide range of operating conditions, physical properties, and pipe diameters.


Author(s):  
Wan n Nazirah Wan Md Adna ◽  
Nofri Yenita Dahlan ◽  
Ismail Musirin

This paper presents a Hybrid Artificial Neural Network (HANN) for chiller system Measurement and Verification (M&V) model development. In this work, hybridization of Evolutionary Programming (EP) and Artificial Neural Network (ANN) are considered in modeling the baseline electrical energy consumption for a chiller system hence quantifying saving. EP with coefficient of correlation (R) objective function is used in optimizing the neural network training process and selecting the optimal values of ANN initial weights and biases. Three inputs that are affecting energy use of the chiller system are selected; 1) operating time, 2) refrigerant tonnage and 3) differential temperature. The output is hourly energy use of building air-conditioning system. The HANN model is simulated with 16 different structures and the results reveal that all HANN structures produce higher prediction performance with R is above 0.977. The best structure with the highest value of R is selected as the baseline model hence is used to determine the saving. The avoided energy calculated from this model is 132944.59 kWh that contributes to 1.38% of saving percentage.


2014 ◽  
Vol 902 ◽  
pp. 431-436 ◽  
Author(s):  
A. Shahpanah ◽  
S. Poursafary ◽  
S. Shariatmadari ◽  
A. Gholamkhasi ◽  
S.M. Zahraee

A queuing network model related to arrival, departure and berthing process of ships at port container terminal is presented in this paper. The important datas collected from PTP port container terminal located at Malaysia. Based on the case study the model was built with using Arena 13.5 simulation software. Especially this study proposes a hybrid approach consisting of Genetic algorithm (GA), Artificial Neural Network (ANN) to find the the optimum number of equipments at berthing area of port container terminal. The input data that used in ANN obtained from Arena results. The main goal of this study is reduced waiting time of each ship at port container terminal, and Based on the result the optimum waiting time 50 will be achieved.


Economic Denial of Sustainability (EDoS) is a latest threat in the cloud environment in which EDoS attackers continually request huge number of resources that includes virtual machines, virtual security devices, virtual networking devices, databases and so on to slowly exploit illegal traffic to trigger cloud-based scaling capabilities. As a result, the targeted cloud ends with a consumer bill that could lead to bankruptcy. This paper proposes an intelligent reactive approach that utilizes Genetic Algorithm and Artificial Neural Network (GANN) for classification of cloud server consumer to minimize the effect of EDoS attacks and will be beneficial to small and medium size organizations. EDoS attack encounters the illegal traffic so the work is progressed into two phases: Artificial Neural Network (ANN) is used to determine affected path and to detect suspected service provider out of the detected affected route which further consist of training and testing phase. The properties of every server are optimized by using an appropriate fitness function of Genetic Algorithm (GA) based on energy consumption of server. ANN considered these properties to train the system to distinguish between the genuine overwhelmed server and EDoS attack affected server. The experimental results show that the proposed Genetic and Artificial Neural Network (GANN) algorithm performs better compared to existing Fuzzy Entropy and Lion Neural Learner (FLNL) technique with values of precision, recall and f-measure are increased by 3.37%, 10.26% and 6.93% respectively.


Sign in / Sign up

Export Citation Format

Share Document