LaNi0.6Co0.4−xFexO3−δ as Air-Side Contact Material for La0.3Ca0.7Fe0.7Cr0.3O3−δ Reversible Solid Oxide Fuel Cell Electrodes

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 73
Author(s):  
Kalpana Singh ◽  
Paul Kwesi Addo ◽  
Venkataraman Thangadurai ◽  
Jesús Prado-Gonjal ◽  
Beatriz Molero-Sánchez

The goal of the current work was to identify an air-side-optimized contact material for La0.3Ca0.7Fe0.7Cr0.3O3−δ (LCFCr) electrodes and a Crofer22APU interconnect for use in reversible solid oxide fuel cells (RSOFCs). LaNi0.6Co0.4−xFexO3 (x = 0–0.3) perovskite-type oxides were investigated in this work. The partial substitution of Co by Fe decreased the thermal expansion coefficient values (TEC) closer to the values of the LCFCr and Crofer 22 APU interconnects. The oxides were synthesized using the glycine–nitrate method and were characterized using X-ray thermodiffraction and 4-probe DC electrical conductivity measurements. Based on the materials characterization results from the Fe-doped oxides investigated here, the LaNi0.6Co0.2Fe0.2O3−δ composition was selected as a good candidate for the contact material, as it exhibited an acceptable electrical conductivity value of 395 S·cm−1 at 800 °C in air and a TEC value of 14.98 × 10−6 K−1 (RT-900 °C).

2021 ◽  
Vol MA2021-03 (1) ◽  
pp. 181-181
Author(s):  
Yeong-Shyung Chou ◽  
Tongan Jin ◽  
Nathan L Canfield ◽  
Jeff Bonnett ◽  
Jung Pyung Choi ◽  
...  

2013 ◽  
Vol 1495 ◽  
Author(s):  
Kee-Chul Chang ◽  
Brian Ingram ◽  
Paul Salvador ◽  
Bilge Yildiz ◽  
Hoydoo You

ABSTRACTWe will briefly review in situ synchrotron x-ray investigation of model thin film cathode systems for solid oxide fuel cells. The film cathodes examined in this study are (La,Sr)MnO3_δ (LSM), (La,Sr)CoO3_δ (LSC), and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) thin films epitaxially grown on YSZ single crystal substrates by the pulse laser deposition technique. We find in all cases that Sr is enriched or segregated to the surface of the film cathodes. We concluded that the Sr enrichments or segregations are mainly the results of annealing because they do not depend on whether the cathodes are electrochemically biased or not during annealing. However, at least in the case of LSCF, we find that B-site Co segregates rather uniformly to the surface and the segregation responds sensitively and reversibly to the electrochemical bias.


2013 ◽  
Author(s):  
William M. Harris ◽  
Jeffrey J. Lombardo ◽  
George J. Nelson ◽  
Wilson K. S. Chiu ◽  
Barry Lai ◽  
...  

Fuel flexibility is widely considered one of the most significant advantages of solid oxide fuel cells (SOFC). However, the presence of small amounts of sulfur or other impurities in the gas stream can have a serious impact on cell performance [1–10]. Under certain conditions, hydrogen sulfide (H2S), even at the ppm level, can lead to the formation of bulk nickel-sulfides within the conventional Ni–yttria-stabilized zirconia (Ni-YSZ) anode of SOFC’s [9]. Understanding the distribution of these sulfides is critical to describing their effects on the electrochemical activity of the cell.


Sign in / Sign up

Export Citation Format

Share Document