scholarly journals Magneto-Optical Isolator Based on Ultra-Wideband Photonic Crystals Waveguide for 5G Communication System

Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 570 ◽  
Author(s):  
Yong Wang ◽  
Biaogang Xu ◽  
Dengguo Zhang ◽  
Shixiang Xu ◽  
Zheng Dong ◽  
...  

This paper presents a novel magneto-optical isolator based on an ultra-wideband and high efficiency photonic crystals (PCs) waveguide and gyromagnetic ferrites. The three-dimensional numerical simulation finds that the photonic crystals waveguide’s (PCW) transmission efficiency rises with its height and width. The corresponding experiments are performed by using a triangular lattice Al2O3 dielectric posts array in 5G millimeter wave band. The measured transmission efficiency is up to 90.78% for the optimal PCs waveguide structure, which has ultra-wide operating bandwidth from 23.45 to 31.25 GHz. The magneto-optical isolator is designed by inserting two rectangular gyromagnetic ferrites into the PCs waveguide. Due to the contrast between the effective permeability of the left and right circular polarization waves passing through the magnetized ferrite sheets, the ferromagnetic resonance absorption of the forward and reverse waves is different. By using finite element method, the isolation is optimized to be 49.49 dB for the isolator and its relative bandwidth reaches 8.85%. The high isolation, broadband, and easy integration indicate that our designed magneto-optical isolator has significant advantage in 5G communication systems.

Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1083
Author(s):  
Saifur Rahman ◽  
Xin-cheng Ren ◽  
Ahsan Altaf ◽  
Muhammad Irfan ◽  
Mujeeb Abdullah ◽  
...  

In this work, a new Multiple Input Multiple Output (MIMO) antenna system with a novel shape inspired by nature is proposed for Fifth-Generation (5G) communication systems. The antenna is designed on a Rogers 5880. The dielectric constant of the substrate is 2.2, and the loss tangent is assumed to be 0.0009. The gain of the system for the desired bandwidth is nearly 8 dB. The simulated and the measured efficiency of the proposed system is 95% and 80%, respectively. To demonstrate the capability of the system as a potential candidate for future 5G communication devices, MIMO key performance parameters such as the Envelope Correlation Coefficient (ECC) and Diversity Gain (DG) are computed. It is found that the proposed system has low ECC, constant DG, and high efficiency for the desired bandwidth.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 43214-43221 ◽  
Author(s):  
Yaohui Zhang ◽  
Yonghong Zhang ◽  
Daotong Li ◽  
Kunning Liu ◽  
Yong Fan

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 120463-120474 ◽  
Author(s):  
Yong Wang ◽  
Dengguo Zhang ◽  
Biaogang Xu ◽  
Zheng Dong ◽  
Xuanke Zeng ◽  
...  

Author(s):  
Mingyu Lu ◽  
Nan-Wei Chen ◽  
Jonathan W. Bredow ◽  
Sungyong Jung ◽  
Saibun Tjuatja

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1565
Author(s):  
Lucas Polo-López ◽  
Pablo Sanchez-Olivares ◽  
Eduardo García-Marín ◽  
Jorge A. Ruiz-Cruz ◽  
Juan Córcoles ◽  
...  

Some recent waveguide-based antennas are presented in this paper, designed for the next generation of communication systems operating at the millimeter-wave band. The presented prototypes have been conceived to be manufactured using different state-of-the-art techniques, involving subtractive and additive approaches. All the designs have used the latest developments in the field of manufacturing to guarantee the required accuracy for operation at millimeter-wave frequencies, where tolerances are extremely tight. Different designs will be presented, including a monopulse antenna combining a comparator network, a mode converter, and a spline profile horn; a tunable phase shifter that is integrated into an array to implement reconfigurability of the main lobe direction; and a conformal array antenna. These prototypes were manufactured by diverse approaches taking into account the waveguide configuration, combining parts with high-precision milling, electrical discharge machining, direct metal laser sintering, or stereolithography with spray metallization, showing very competitive performances at the millimeter-wave band till 40 GHz.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jun Suk Kim ◽  
Jae Sheung Shin ◽  
Sung-Min Oh ◽  
Ae-Soon Park ◽  
Min Young Chung

The use of a millimeter-wave band defined as a 30–300 GHz range is significant element for improving performance of 5th generation (5G) mobile communication systems. However, since the millimeter-wave signal has peculiar propagation characteristics especially toward non-line-of-sight regions, the system architecture and antenna structure for 5G mobile communications should be designed to overcome these propagation limitations. For realization of the 5G mobile communications, electronics and telecommunications research institute (ETRI) is developing central network applying various massive antenna structures with beamforming. In this paper, we have introduced the central network and evaluated the system coverage and capacity through C++ language-based simulations with real geospatial information.


Sign in / Sign up

Export Citation Format

Share Document