scholarly journals Interactions among Shade, Caching Behavior, and Predation Risk May Drive Seed Trait Evolution in Scatter-Hoarded Plants

Diversity ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 416
Author(s):  
Nathanael I. Lichti ◽  
Harmony J. Dalgleish ◽  
Michael A. Steele

Although dispersal is critical to plant life history, the relationships between seed traits and dispersal success in animal-dispersed plants remain unclear due to complex interactions among the effects of seed traits, habitat structure, and disperser behavior. We propose that in plants dispersed by scatter-hoarding granivores, seed trait evolution may have been driven by selective pressures that arise from interactions between seedling shade intolerance and predator-mediated caching behavior. Using an optimal foraging model that accounts for cache concealment, hoarder memory, and perceived predation risk, we show that hoarders can obtain cache-recovery advantages by placing caches in moderately risky locations that force potential pilferers to engage in high levels of vigilance. Our model also demonstrates that the level of risk needed to optimally protect a cache increases with the value of the cached food item. If hoarders perceive less sheltered, high-light conditions to be more risky and use this information to protect their caches, then shade-intolerant plants may increase their fitness by producing seeds with traits valued by hoarders. Consistent with this hypothesis, shade tolerance in scatter-hoarded tree species is inversely related to the value of their seeds as perceived by a scatter-hoarding rodent.

1998 ◽  
Vol 76 (10) ◽  
pp. 1878-1884 ◽  
Author(s):  
Edward P Levri

Foraging behavior can be influenced by such factors as predation risk, individual size, and parasite infection. Snails (Potamopyrgus antipodarum) placed in tanks with large rocks were exposed to four types of water: (1) water with crushed snails, (2) water from a tank in which fish (Gobiomorphus cotidianus) were fed only trout chow, (3) water from a tank where the fish were also fed snails, and (4) plain water. Snails could respond by moving to the top of rocks (where algal food was present) or to the bottom of rocks (where the predation risk was lower). The snails responded to fish chemicals by moving to the bottom of rocks. The response was dependent on snail size and fish diet. Smaller snails moved to the bottom of rocks more than larger snails did. Trematode-infected snails were found on top of the rocks more than other classes of snails, but infected snails still moved to the bottom of rocks in response to the fish predator. Snails eaten by fish in the field tend to be smaller than snails in the overall available population. Thus, snails that are more vulnerable to predation respond more intensely to the odor of fish by moving to the bottom of rocks. This size-dependent response to fish appears to be independent of the occurrence of trematode infection.


2016 ◽  
Vol 187 (5) ◽  
pp. 607-619 ◽  
Author(s):  
Ari E. Martínez ◽  
Juan P. Gomez ◽  
José Miguel Ponciano ◽  
Scott K. Robinson

2012 ◽  
Vol 90 (6) ◽  
pp. 694-703 ◽  
Author(s):  
H. Gillis ◽  
B. Gauffre ◽  
R. Huot ◽  
V. Bretagnolle

Avian eggs need to be laid in protected environments to develop and survive. Nest predation is known as the main cause of breeding failure for many birds, but nest microclimate conditions are also important for embryo development. These two selective pressures are particularly marked in ground-nesting birds. Vegetation height has been shown to be a critical factor for nest-site selection in ground-nesting birds because it can counteract predation and overheating simultaneously. It is therefore difficult to disentangle the respective influences of these risks on selection of a particular nest vegetation height. To develop a conceptual framework for understanding and predicting the relative effects of vegetation on predation and nest microclimate during a breeding season, we used vegetation height to manipulate differentially these two risks. We therefore exposed artificial nests to a wide range of vegetation heights, replicated the experimental tests during spring, and manipulated egg color to estimate predation risk. We confirmed that tall vegetation is relevant to protect unattended eggs against both risks. Whereas predation risk is stable for a given vegetation height, overheating risk presents inter- and intra-seasonal variations. Therefore, over a breeding season, for a given vegetation height, the respective strengths of the two risks are unbalanced and depends on egg coloration. The breeding strategy of ground-nesting birds thus should have been shaped by both selective pressures, but the ultimate choice may depend on the species-specific laying dates and alternative behavioral strategies for protecting the clutch. This study provides new perspectives to investigate avian parental behaviour.


2020 ◽  
Vol 223 (4) ◽  
pp. jeb213611
Author(s):  
Jerker Vinterstare ◽  
Kaj Hulthén ◽  
P. Anders Nilsson ◽  
Helen Nilsson Sköld ◽  
Christer Brönmark

Sign in / Sign up

Export Citation Format

Share Document