scholarly journals Perfusion Patterns of Peripheral Organizing Pneumonia (POP) Using Contrast-Enhanced Ultrasound (CEUS) and Their Correlation with Immunohistochemically Detected Vascularization Patterns

Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1601
Author(s):  
Ehsan Safai Zadeh ◽  
Christina Carolin Westhoff ◽  
Corinna Ulrike Keber ◽  
Corinna Trenker ◽  
Christoph Frank Dietrich ◽  
...  

Purpose: To describe the perfusion patterns of peripheral organizing pneumonia (POP) by contrast-enhanced ultrasound (CEUS) and their correlation with vascularization patterns (VPs) represented by immunohistochemical CD34 endothelial staining. Methods: From October 2006 until December 2020, 38 consecutive patients with histologically confirmed POPs were standardized-examined by CEUS. The time to enhancement (TE; classified as an early pulmonary-arterial [PA] pattern of enhancement vs. delayed bronchial-arterial [BA] pattern of enhancement), the extent of enhancement (EE; classified as marked or reduced), the homogeneity of enhancement (HE; classified as homogeneous or inhomogeneous), and the decrease of enhancement (DE; classified as rapid washout [<120s] or late washout [≥120s]) were evaluated retrospectively. Furthermore, tissue samples from the study patients were immunohistochemically stained with CD34 antibody. The presence of avascular areas (AAs) and the VPs were evaluated in all tissue samples. Results: The majority of POPs showed a BA pattern of enhancement (71.1%), an isoechoic marked enhancement (76.3%), and an inhomogeneous enhancement (81.6%). A rapid DE was observed in 50.0% of cases. On CD34 staining, all POPs had a chaotic VP, indicating BA neoangiogenesis. AAs (abscess, necrosis, hemorrhage) were identified in (41.9%) cases with an inhomogeneous enhancement on CEUS. Conclusion: On CEUS, POPs predominantly revealed a marked inhomogeneous BA pattern of enhancement with a rapid washout in 50% of cases. Furthermore, we demonstrated that the presence of a PA pattern of enhancement, found in 28.9% of POPs, did not exclude a BA neoangiogenesis as an important feature of chronic inflammatory and malignant processes.

2016 ◽  
Vol 42 (7) ◽  
pp. 1441-1449 ◽  
Author(s):  
Zhang Hong-xia ◽  
He Wen ◽  
Cheng Ling-gang ◽  
Cai Wen-jia ◽  
Li Shuo ◽  
...  

2007 ◽  
Vol 177 (4S) ◽  
pp. 560-560
Author(s):  
Robert A. Linden ◽  
Paul R. Gittens ◽  
Flemming Forsberg ◽  
Edouard J. Trabulsi ◽  
Leonard G. Gomella ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 509-510
Author(s):  
D Brooke Johnson ◽  
David A. Duchene ◽  
Grant D. Taylor ◽  
Jeffrey A. Cadeddu

VASA ◽  
2015 ◽  
Vol 44 (3) ◽  
pp. 0187-0194 ◽  
Author(s):  
Xiaoni Chang ◽  
Jun Feng ◽  
Litao Ruan ◽  
Jing Shang ◽  
Yanqiu Yang ◽  
...  

Background: Neovascularization is one of the most important risk factors for unstable plaque. This study was designed to correlate plaque thickness, artery stenosis and levels of serum C-reactive protein with the degree of intraplaque enhancement determined by contrast-enhanced ultrasound. Patients and methods: Contrast-enhanced ultrasound was performed on 72 carotid atherosclerotic plaques in 48 patients. Contrast enhancement within the plaque was categorized as grade 1, 2 or 3. Maximum plaque thickness was measured in short-axis view. Carotid artery stenosis was categorized as mild, moderate or severe. Results: Plaque contrast enhancement was not associated with the degree of artery stenosis or with plaque thickness. Serum C-reactive protein levels were positively correlated with the number of new vessels in the plaque. C-reactive protein levels increased in the three groups(Grade 1: 3.72±1.79mg/L; Grade 2: 7.88±4.24 mg/L; Grade 3: 11.02±3.52 mg/L), with significant differences among them (F=10.14, P<0.01), and significant differences between each two groups (P<0.05). Spearman’s rank correlation analysis showed that serum C-reactive protein levels were positively correlated with the degree of carotid plaque enhancement (Rs =0.69, P<0.01). Conclusions: The combination of C-reactive protein levels and intraplaque neovascularization detected by contrast-enhanced ultrasound may allow more accurate evaluation of plaque stability.


VASA ◽  
2019 ◽  
Vol 48 (2) ◽  
pp. 115-125 ◽  
Author(s):  
Xin Li ◽  
Daniel Staub ◽  
Vasileios Rafailidis ◽  
Mohammed Al-Natour ◽  
Sanjeeva Kalva ◽  
...  

Abstract. Ultrasound has been established as an important diagnostic tool in assessing vascular abnormalities. Standard B-mode and Doppler techniques have inherent limitations with regards to detection of slow flow and small vasculature. Contrast-enhanced ultrasound (CEUS) is a complementary tool and is useful in assessing both the macro- and microvascular anatomy of the aorta. CEUS can also provide valuable physiological information in real-time scanning sessions due to the physical and safety profiles of the administered microbubbles. From a macrovascular perspective, CEUS has been used to characterize aortic aneurysm rupture, dissection and endoleaks post-EVAR repair. With regard to microvasculature CEUS enables imaging of adventitial vasa vasorum thereby assessing aortic inflammation processes, such as monitoring treatment response in chronic periaortitis. CEUS may have additional clinical utility since adventitial vasa vasorum has important implications in the pathogenesis of aortic diseases. In recent years, there have been an increasing number of studies comparing CEUS to cross-sectional imaging for aortic applications. For endoleak surveillance CEUS has been shown to be equal or in certain cases superior in comparison to CT angiography. The recent advancement of CEUS software along with the ongoing development of drug-eluting contrast microbubbles has allowed improved targeted detection and real-time ultrasound guided therapy for aortic vasa vasorum inflammation and neovascularization in animal models. Therefore, CEUS is uniquely suited to comprehensively assess and potentially treat aortic vascular diseases in the future.


Sign in / Sign up

Export Citation Format

Share Document