scholarly journals Detection of 2-Hydroxyglutarate by 3.0-Tesla Magnetic Resonance Spectroscopy in Gliomas with Rare IDH Mutations: Making Sense of “False-Positive” Cases

Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2129
Author(s):  
Manabu Natsumeda ◽  
Hironaka Igarashi ◽  
Ramil Gabdulkhaev ◽  
Haruhiko Takahashi ◽  
Kunio Motohashi ◽  
...  

We have previously published a study on the reliable detection of 2-hydroxyglutarate (2HG) in lower-grade gliomas by magnetic resonance spectroscopy (MRS). In this short article, we re-evaluated five glioma cases originally assessed as isocitrate dehydrogenase (IDH) wildtype, which showed a high accumulation of 2HG, and were thought to be false-positives. A new primer was used for the detection of IDH2 mutation by Sanger sequencing. Adequate tissue for DNA analysis was available in 4 out of 5 cases. We found rare IDH2 mutations in two cases, with IDH2 R172W mutation in one case and IDH2 R172K mutation in another case. Both cases had very small mutant peaks, suggesting that the tumor volume was low in the tumor samples. Thus, the specificity of MRS for detecting IDH1/2 mutations was higher (81.3%) than that originally reported (72.2%). The detection of 2HG by MRS can aid in the diagnosis of rare, non-IDH1-R132H IDH1 and IDH2 mutations in gliomas.

2016 ◽  
Vol 34 (33) ◽  
pp. 4030-4039 ◽  
Author(s):  
Changho Choi ◽  
Jack M. Raisanen ◽  
Sandeep K. Ganji ◽  
Song Zhang ◽  
Sarah S. McNeil ◽  
...  

Purpose Proton magnetic resonance spectroscopy (MRS) of the brain can detect 2-hydroxyglutarate (2HG), the oncometabolite produced in neoplasms harboring a mutation in the gene coding for isocitrate dehydrogenase ( IDH). We conducted a prospective longitudinal imaging study to determine whether quantitative assessment of 2HG by MRS could serve as a noninvasive clinical imaging biomarker for IDH-mutated gliomas. Patients and Methods 2HG MRS was performed in 136 patients using point-resolved spectroscopy at 3 T in parallel with standard clinical magnetic resonance imaging and assessment. Data were analyzed in patient cohorts representing the major phases of the glioma clinical course and were further subgrouped by histology and treatment type to evaluate 2HG. Histologic correlations were performed. Results Quantitative 2HG MRS was technically and biologically reproducible. 2HG concentration > 1 mM could be reliably detected with high confidence. During the period of indolent disease, 2HG concentration varied by less than ± 1 mM, and it increased sharply with tumor progression. 2HG concentration was positively correlated with tumor cellularity and significantly differed between high- and lower-grade gliomas. In response to cytotoxic therapy, 2HG concentration decreased rapidly in 1p/19q codeleted oligodendrogliomas and with a slower time course in astrocytomas and mixed gliomas. The magnitude and time course of the decrease in 2HG concentration and magnitude of the decrease in tumor volume did not differ between oligodendrogliomas treated with temozolomide or carmustine. Criteria for 2HG MRS were established to make a presumptive molecular diagnosis of an IDH mutation in gliomas technically unable to undergo a surgical procedure. Conclusion 2HG concentration as measured by MRS was reproducible and reliably reflected the disease state. These data provide a basis for incorporating 2HG MRS into clinical management of IDH-mutated gliomas.


2018 ◽  
Vol 128 (2) ◽  
pp. 391-398 ◽  
Author(s):  
Anna Tietze ◽  
Changho Choi ◽  
Bruce Mickey ◽  
Elizabeth A. Maher ◽  
Benedicte Parm Ulhøi ◽  
...  

OBJECTIVEMutations in the isocitrate dehydrogenase (IDH) genes are of proven diagnostic and prognostic significance for cerebral gliomas. The objective of this study was to evaluate the clinical feasibility of using a recently described method for determining IDH mutation status by using magnetic resonance spectroscopy (MRS) to detect the presence of 2-hydroxyglutarate (2HG), the metabolic product of the mutant IDH enzyme.METHODSBy extending imaging time by 6 minutes, the authors were able to include a point-resolved spectroscopy (PRESS) MRS sequence in their routine glioma imaging protocol. In 30 of 35 patients for whom this revised protocol was used the lesions were subsequently diagnosed histologically as gliomas. Of the remaining 5 patients, 1 had a gangliocytoma, 1 had a primary CNS lymphoma, and 3 had nonneoplastic lesions. Immunohistochemistry and/or polymerase chain reaction were used to detect the presence of IDH mutations in the glioma tissue resected.RESULTSIn vivo MRS for 2HG correctly identified the IDH mutational status in 88.6% of patients. The sensitivity and specificity was 89.5% and 81.3%, respectively, when using 2 mM 2HG as threshold to discriminate IDH-mutated from wildtype tumors. Two glioblastomas that had elevated 2HG levels did not have detectable IDH mutations, and in 2 IDH-mutated gliomas 2HG was not reliably detectable.CONCLUSIONSThe noninvasive determination of the IDH mutation status of a presumed glioma by means of MRS may be incorporated into a routine diagnostic imaging protocol and can be used to obtain additional information for patient care.


2014 ◽  
Vol 16 (suppl 2) ◽  
pp. ii78-ii78
Author(s):  
E. Anghileri ◽  
N. Bertolino ◽  
V. Cuccarini ◽  
I. Zucca ◽  
G. Finocchiaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document