scholarly journals The Effects of Padé Numerical Integration in Simulation of Conservative Chaotic Systems

Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 362 ◽  
Author(s):  
Denis Butusov ◽  
Artur Karimov ◽  
Aleksandra Tutueva ◽  
Dmitry Kaplun ◽  
Erivelton G. Nepomuceno

In this paper, we consider nonlinear integration techniques, based on direct Padé approximation of the differential equation solution, and their application to conservative chaotic initial value problems. The properties of discrete maps obtained by nonlinear integration are studied, including phase space volume dynamics, bifurcation diagrams, spectral entropy, and the Lyapunov spectrum. We also plot 2D dynamical maps to enlighten the features introduced by nonlinear integration techniques. The comparative study of classical integration methods and Padé approximation methods is given. It is shown that nonlinear integration techniques significantly change the behavior of discrete models of nonlinear systems, increasing the values of Lyapunov exponents and spectral entropy. This property reduces the applicability of numerical methods based on Padé approximation to the chaotic system simulation but it is still useful for construction of pseudo-random number generators that are resistive to chaos degradation or discrete maps with highly nonlinear properties.

2017 ◽  
Vol 137 (2) ◽  
pp. 147-153
Author(s):  
Akinori Hori ◽  
Hiroki Tanaka ◽  
Yuichiro Hayakawa ◽  
Hiroshi Shida ◽  
Keiji Kawahara ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Jingjing Feng ◽  
Qichang Zhang ◽  
Wei Wang ◽  
Shuying Hao

In dynamic systems, some nonlinearities generate special connection problems of non-Z2symmetric homoclinic and heteroclinic orbits. Such orbits are important for analyzing problems of global bifurcation and chaos. In this paper, a general analytical method, based on the undetermined Padé approximation method, is proposed to construct non-Z2symmetric homoclinic and heteroclinic orbits which are affected by nonlinearity factors. Geometric and symmetrical characteristics of non-Z2heteroclinic orbits are analyzed in detail. An undetermined frequency coefficient and a corresponding new analytic expression are introduced to improve the accuracy of the orbit trajectory. The proposed method shows high precision results for the Nagumo system (one single orbit); general types of non-Z2symmetric nonlinear quintic systems (orbit with one cusp); and Z2symmetric system with high-order nonlinear terms (orbit with two cusps). Finally, numerical simulations are used to verify the techniques and demonstrate the enhanced efficiency and precision of the proposed method.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C219-C227 ◽  
Author(s):  
Hanjie Song ◽  
Yingjie Gao ◽  
Jinhai Zhang ◽  
Zhenxing Yao

The approximation of normal moveout is essential for estimating the anisotropy parameters of the transversally isotropic media with vertical symmetry axis (VTI). We have approximated the long-offset moveout using the Padé approximation based on the higher order Taylor series coefficients for VTI media. For a given anellipticity parameter, we have the best accuracy when the numerator is one order higher than the denominator (i.e., [[Formula: see text]]); thus, we suggest using [4/3] and [7/6] orders for practical applications. A [7/6] Padé approximation can handle a much larger offset and stronger anellipticity parameter. We have further compared the relative traveltime errors between the Padé approximation and several approximations. Our method shows great superiority to most existing methods over a wide range of offset (normalized offset up to 2 or offset-to-depth ratio up to 4) and anellipticity parameter (0–0.5). The Padé approximation provides us with an attractive high-accuracy scheme with an error that is negligible within its convergence domain. This is important for reducing the error accumulation especially for deeper substructures.


2015 ◽  
Vol 278 ◽  
pp. 248-256 ◽  
Author(s):  
A.S. Dogonchi ◽  
M. Hatami ◽  
Kh. Hosseinzadeh ◽  
G. Domairry

Sign in / Sign up

Export Citation Format

Share Document