scholarly journals 3C3R, an Image Encryption Algorithm Based on BBI, 2D-CA, and SM-DNA

Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1075 ◽  
Author(s):  
Sajid Khan ◽  
Lansheng Han ◽  
Ghulam Mudassir ◽  
Bachira Guehguih ◽  
Hidayat Ullah

Color image encryption has enticed a lot of attention in recent years. Many authors proposed a chaotic system-based encryption algorithms for that purpose. However, due to the shortcomings of the low dimensional chaotic systems, similar rule structure for RGB channels, and the small keyspace, many of those were cryptanalyzed by chosen-plaintext or other well-known attacks. A Security vulnerability exists because of the same method being applied over the RGB channels. This paper aims to introduce a new three-channel three rules (3C3R) image encryption algorithm along with two novel mathematical models for DNA rule generator and bit inversion. A different rule structure was applied in the different RGB-channels. In the R-channel, a novel Block-based Bit Inversion (BBI) is introduced, in the G-channel Von-Neumann (VN) and Rotated Von-Neumann (RVN)- based 2D-cellular structure is applied. In the B-channel, a novel bidirectional State Machine-based DNA rule generator (SM-DNA) is introduced. Simulations and results show that the proposed 3C3R encryption algorithm is robust against all well-known attacks particularly for the known-plaintext attacks, statistical attacks, brute-force attacks, differential attacks, and occlusion attacks, etc. Also, unlike earlier encryption algorithms, the 3C3R has no security vulnerability.

Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1127
Author(s):  
Yue Zhao ◽  
Lingfeng Liu

A chaotic system refers to a deterministic system with seemingly random irregular motion, and its behavior is uncertain, unrepeatable, and unpredictable. In recent years, researchers have proposed various image encryption schemes based on a single low-dimensional or high-dimensional chaotic system, but many algorithms have problems such as low security. Therefore, designing a good chaotic system and encryption scheme is very important for encryption algorithms. This paper constructs a new double chaotic system based on tent mapping and logistic mapping. In order to verify the practicability and feasibility of the new chaotic system, a displacement image encryption algorithm based on the new chaotic system was subsequently proposed. This paper proposes a displacement image encryption algorithm based on the new chaotic system. The algorithm uses an improved new nonlinear feedback function to generate two random sequences, one of which is used to generate the index sequence, the other is used to generate the encryption matrix, and the index sequence is used to control the generation of the encryption matrix required for encryption. Then, the encryption matrix and the scrambling matrix are XORed to obtain the first encryption image. Finally, a bit-shift encryption method is adopted to prevent the harm caused by key leakage and to improve the security of the algorithm. Numerical experiments show that the key space of the algorithm is not only large, but also the key sensitivity is relatively high, and it has good resistance to various attacks. The analysis shows that this algorithm has certain competitive advantages compared with other encryption algorithms.


2019 ◽  
Vol 29 (09) ◽  
pp. 1950115 ◽  
Author(s):  
Guangfeng Cheng ◽  
Chunhua Wang ◽  
Hua Chen

In recent years, scholars studied and proposed some secure color image encryption algorithms. However, the majority of the published algorithms encrypted red, green and blue (called [Formula: see text], [Formula: see text], [Formula: see text] for short) components independently. In the paper, we propose a color image encryption scheme based on hyperchaotic system and permutation-diffusion architecture. The encryption algorithm utilizes a block permutation which is realized by mixing [Formula: see text], [Formula: see text], [Formula: see text] components to strengthen the dependence of each component. Besides, it can reduce time consumption. Then, the key streams generated by the hyperchaotic system are exploited to diffuse the pixels, the three components affect each other again. And in the diffusion process, we can get two totally different encrypted images even though we change the last pixel because the [Formula: see text] component is diffused in reverse order. The experimental results reveal that our algorithm possesses better abilities of resisting statistical attacks and differential attacks, larger key space, closer information entropy to 8, and faster encryption speed compared with other chaos-based color image encryption algorithms.


Sign in / Sign up

Export Citation Format

Share Document