scholarly journals The Molecular Theory of Liquid Nanodroplets Energetics in Aerosols

Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 13
Author(s):  
Sergii D. Kaim

Studies of the coronavirus SARS-CoV-2 spread mechanisms indicate that the main mechanism is associated with the spread in the atmosphere of micro- and nanodroplets of liquid with an active agent. However, the molecular theory of aerosols of microdroplets in gases remains poorly developed. In this work, the energy properties of aerosol nanodroplets of simple liquids suspended in a gas were studied within the framework of molecular theory. The three components of the effective aerosol Hamiltonian were investigated: (1) the interaction energy of an individual atom with a liquid nanodroplet; (2) the surface energy of liquid nanodroplet; and (3) the interaction energy of two liquid nanodroplets. The size dependence of all contributions was investigated. The pairwise interparticle interactions and pairwise interparticle correlations were accounted for to study the nanodroplet properties using the Fowler approximation. In this paper, the problem of the adhesion energy calculation of a molecular complex and a liquid nanodroplet is discussed. The derived effective Hamiltonian is generic and can be used for the cases of multicomponent nano-aerosols and to account for particle size distributions.

1999 ◽  
Author(s):  
K.K. Ellis ◽  
R. Buchan ◽  
M. Hoover ◽  
J. Martyny ◽  
B. Bucher-Bartleson ◽  
...  

2010 ◽  
Vol 126 (10/11) ◽  
pp. 577-582 ◽  
Author(s):  
Katsuhiko FURUKAWA ◽  
Yuichi OHIRA ◽  
Eiji OBATA ◽  
Yutaka YOSHIDA

1996 ◽  
Vol 61 (4) ◽  
pp. 536-563
Author(s):  
Vladimír Kudrna ◽  
Pavel Hasal

To the description of changes of solid particle size in population, the application was proposed of stochastic differential equations and diffusion equations adequate to them making it possible to express the development of these populations in time. Particular relations were derived for some particle size distributions in flow and batch equipments. It was shown that it is expedient to complement the population balances often used for the description of granular systems by a "diffusion" term making it possible to express the effects of random influences in the growth process and/or particle diminution.


Sign in / Sign up

Export Citation Format

Share Document