scholarly journals The Challenges of Machine Learning and Their Economic Implications

Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 275
Author(s):  
Pol Borrellas ◽  
Irene Unceta

The deployment of machine learning models is expected to bring several benefits. Nevertheless, as a result of the complexity of the ecosystem in which models are generally trained and deployed, this technology also raises concerns regarding its (1) interpretability, (2) fairness, (3) safety, and (4) privacy. These issues can have substantial economic implications because they may hinder the development and mass adoption of machine learning. In light of this, the purpose of this paper was to determine, from a positive economics point of view, whether the free use of machine learning models maximizes aggregate social welfare or, alternatively, regulations are required. In cases in which restrictions should be enacted, policies are proposed. The adaptation of current tort and anti-discrimination laws is found to guarantee an optimal level of interpretability and fairness. Additionally, existing market solutions appear to incentivize machine learning operators to equip models with a degree of security and privacy that maximizes aggregate social welfare. These findings are expected to be valuable to inform the design of efficient public policies.

2021 ◽  
Author(s):  
Michael Tarasiou

This paper presents DeepSatData a pipeline for automatically generating satellite imagery datasets for training machine learning models. We also discuss design considerations with emphasis on dense classification tasks, e.g. semantic segmentation. The implementation presented makes use of freely available Sentinel-2 data which allows the generation of large scale datasets required for training deep neural networks (DNN). We discuss issues faced from the point of view of DNN training and evaluation such as checking the quality of ground truth data and comment on the scalability of the approach.


Author(s):  
Marcio Salles Melo Lima ◽  
Enes Eryarsoy ◽  
Dursun Delen

Pig iron, the source for a variety of iron-based products, is traded in commodity markets. Therefore, enhanced productivity has significant economic implications for the producers. Pig iron is mainly produced inside of tall, vertical, thermodynamic reactors called blast furnaces that run 24 hours a day. The blast furnaces are too complex to model explicitly and are generally regarded as black boxes. In this study, we design, develop, and deploy novel machine learning models on a rich data sample covering more than 20 production variables spanning nine years of actual operational period, collected at one of the largest pig iron production plants in Brazil. We show that, given the blast furnace parameters, machine learning models are capable of unveiling novel insights by illuminating the black box and successfully predicting production levels at different configurations. These prediction models can be used as decision aids to improve production efficiencies. We also perform a sensitivity analysis of the trained models to identify and rank the input variables according to their relative importance. We present our findings, which are largely in line with the existing literature, and confirm their validity, practicality, and usefulness through consultations with subject matter experts.


2021 ◽  
Author(s):  
Michael Tarasiou

This paper presents DeepSatData a pipeline for automatically generating satellite imagery datasets for training machine learning models. We also discuss design considerations with emphasis on dense classification tasks, e.g. semantic segmentation. The implementation presented makes use of freely available Sentinel-2 data which allows the generation of large scale datasets required for training deep neural networks (DNN). We discuss issues faced from the point of view of DNN training and evaluation such as checking the quality of ground truth data and comment on the scalability of the approach.


2022 ◽  
Author(s):  
Song Guo ◽  
Zhihao Qu

Discover this multi-disciplinary and insightful work, which integrates machine learning, edge computing, and big data. Presents the basics of training machine learning models, key challenges and issues, as well as comprehensive techniques including edge learning algorithms, and system design issues. Describes architectures, frameworks, and key technologies for learning performance, security, and privacy, as well as incentive issues in training/inference at the network edge. Intended to stimulate fruitful discussions, inspire further research ideas, and inform readers from both academia and industry backgrounds. Essential reading for experienced researchers and developers, or for those who are just entering the field.


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


2021 ◽  
Author(s):  
Norberto Sánchez-Cruz ◽  
Jose L. Medina-Franco

<p>Epigenetic targets are a significant focus for drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represents a large amount of structure-activity relationships that has not been exploited thus far for the development of predictive models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 26318 compounds with a quantitative measure of biological activity for 55 protein targets with epigenetic activity. Through a systematic comparison of machine learning models trained on molecular fingerprints of different design, we built predictive models with high accuracy for the epigenetic target profiling of small molecules. The models were thoroughly validated showing mean precisions up to 0.952 for the epigenetic target prediction task. Our results indicate that the herein reported models have considerable potential to identify small molecules with epigenetic activity. Therefore, our results were implemented as freely accessible and easy-to-use web application.</p>


Sign in / Sign up

Export Citation Format

Share Document