scholarly journals Polar Vortex Multi-Day Intensity Prediction Relying on New Deep Learning Model: A Combined Convolution Neural Network with Long Short-Term Memory Based on Gaussian Smoothing Method

Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1314
Author(s):  
Kecheng Peng ◽  
Xiaoqun Cao ◽  
Bainian Liu ◽  
Yanan Guo ◽  
Chaohao Xiao ◽  
...  

The variation of polar vortex intensity is a significant factor affecting the atmospheric conditions and weather in the Northern Hemisphere (NH) and even the world. However, previous studies on the prediction of polar vortex intensity are insufficient. This paper establishes a deep learning (DL) model for multi-day and long-time intensity prediction of the polar vortex. Focusing on the winter period with the strongest polar vortex intensity, geopotential height (GPH) data of NCEP from 1948 to 2020 at 50 hPa are used to construct the dataset of polar vortex anomaly distribution images and polar vortex intensity time series. Then, we propose a new convolution neural network with long short-term memory based on Gaussian smoothing (GSCNN-LSTM) model which can not only accurately predict the variation characteristics of polar vortex intensity from day to day, but also can produce a skillful forecast for lead times of up to 20 days. Moreover, the innovative GSCNN-LSTM model has better stability and skillful correlation prediction than the traditional and some advanced spatiotemporal sequence prediction models. The accuracy of the model suggests important implications that DL methods have good applicability in forecasting the nonlinear system and vortex spatial–temporal characteristics variation in the atmosphere.

2021 ◽  
Author(s):  
Vipul Sharma ◽  
Mitul Kumar Ahirwal

In this paper, a new cascade one-dimensional convolution neural network (1DCNN) and bidirectional long short-term memory (BLSTM) model has been developed for binary and ternary classification of mental workload (MWL). MWL assessment is important to increase the safety and efficiency in Brain-Computer Interface (BCI) systems and professions where multi-tasking is required. Keeping in mind the necessity of MWL assessment, a two-fold study is presented, firstly binary classification is done to classify MWL into Low and High classes. Secondly, ternary classification is applied to classify MWL into Low, Moderate, and High classes. The cascaded 1DCNN-BLSTM deep learning architecture has been developed and tested over the Simultaneous task EEG workload (STEW) dataset. Unlike recent research in MWL, handcrafted feature extraction and engineering are not done, rather end-to-end deep learning is used over 14 channel EEG signals for classification. Accuracies exceeding the previous state-of-the-art studies have been obtained. In binary and ternary classification accuracies of 96.77% and 95.36% have been achieved with 7-fold cross validation, respectively.


2021 ◽  
Author(s):  
Vipul Sharma ◽  
Mitul Kumar Ahirwal

In this paper, a new cascade one-dimensional convolution neural network (1DCNN) and bidirectional long short-term memory (BLSTM) model has been developed for binary and ternary classification of mental workload (MWL). MWL assessment is important to increase the safety and efficiency in Brain-Computer Interface (BCI) systems and professions where multi-tasking is required. Keeping in mind the necessity of MWL assessment, a two-fold study is presented, firstly binary classification is done to classify MWL into Low and High classes. Secondly, ternary classification is applied to classify MWL into Low, Moderate, and High classes. The cascaded 1DCNN-BLSTM deep learning architecture has been developed and tested over the Simultaneous task EEG workload (STEW) dataset. Unlike recent research in MWL, handcrafted feature extraction and engineering are not done, rather end-to-end deep learning is used over 14 channel EEG signals for classification. Accuracies exceeding the previous state-of-the-art studies have been obtained. In binary and ternary classification accuracies of 96.77% and 95.36% have been achieved with 7-fold cross validation, respectively.


2021 ◽  
Author(s):  
Vipul Sharma ◽  
Mitul Kumar Ahirwal

In this paper, a new cascade one-dimensional convolution neural network (1DCNN) and bidirectional long short-term memory (BLSTM) model has been developed for binary and ternary classification of mental workload (MWL). MWL assessment is important to increase the safety and efficiency in Brain-Computer Interface (BCI) systems and professions where multi-tasking is required. Keeping in mind the necessity of MWL assessment, a two-fold study is presented, firstly binary classification is done to classify MWL into Low and High classes. Secondly, ternary classification is applied to classify MWL into Low, Moderate, and High classes. The cascaded 1DCNN-BLSTM deep learning architecture has been developed and tested over the Simultaneous task EEG workload (STEW) dataset. Unlike recent research in MWL, handcrafted feature extraction and engineering are not done, rather end-to-end deep learning is used over 14 channel EEG signals for classification. Accuracies exceeding the previous state-of-the-art studies have been obtained. In binary and ternary classification accuracies of 96.77% and 95.36% have been achieved with 7-fold cross validation, respectively.


2021 ◽  
Vol 13 (10) ◽  
pp. 1953
Author(s):  
Seyed Majid Azimi ◽  
Maximilian Kraus ◽  
Reza Bahmanyar ◽  
Peter Reinartz

In this paper, we address various challenges in multi-pedestrian and vehicle tracking in high-resolution aerial imagery by intensive evaluation of a number of traditional and Deep Learning based Single- and Multi-Object Tracking methods. We also describe our proposed Deep Learning based Multi-Object Tracking method AerialMPTNet that fuses appearance, temporal, and graphical information using a Siamese Neural Network, a Long Short-Term Memory, and a Graph Convolutional Neural Network module for more accurate and stable tracking. Moreover, we investigate the influence of the Squeeze-and-Excitation layers and Online Hard Example Mining on the performance of AerialMPTNet. To the best of our knowledge, we are the first to use these two for regression-based Multi-Object Tracking. Additionally, we studied and compared the L1 and Huber loss functions. In our experiments, we extensively evaluate AerialMPTNet on three aerial Multi-Object Tracking datasets, namely AerialMPT and KIT AIS pedestrian and vehicle datasets. Qualitative and quantitative results show that AerialMPTNet outperforms all previous methods for the pedestrian datasets and achieves competitive results for the vehicle dataset. In addition, Long Short-Term Memory and Graph Convolutional Neural Network modules enhance the tracking performance. Moreover, using Squeeze-and-Excitation and Online Hard Example Mining significantly helps for some cases while degrades the results for other cases. In addition, according to the results, L1 yields better results with respect to Huber loss for most of the scenarios. The presented results provide a deep insight into challenges and opportunities of the aerial Multi-Object Tracking domain, paving the way for future research.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0240663
Author(s):  
Beibei Ren

With the rapid development of big data and deep learning, breakthroughs have been made in phonetic and textual research, the two fundamental attributes of language. Language is an essential medium of information exchange in teaching activity. The aim is to promote the transformation of the training mode and content of translation major and the application of the translation service industry in various fields. Based on previous research, the SCN-LSTM (Skip Convolutional Network and Long Short Term Memory) translation model of deep learning neural network is constructed by learning and training the real dataset and the public PTB (Penn Treebank Dataset). The feasibility of the model’s performance, translation quality, and adaptability in practical teaching is analyzed to provide a theoretical basis for the research and application of the SCN-LSTM translation model in English teaching. The results show that the capability of the neural network for translation teaching is nearly one times higher than that of the traditional N-tuple translation model, and the fusion model performs much better than the single model, translation quality, and teaching effect. To be specific, the accuracy of the SCN-LSTM translation model based on deep learning neural network is 95.21%, the degree of translation confusion is reduced by 39.21% compared with that of the LSTM (Long Short Term Memory) model, and the adaptability is 0.4 times that of the N-tuple model. With the highest level of satisfaction in practical teaching evaluation, the SCN-LSTM translation model has achieved a favorable effect on the translation teaching of the English major. In summary, the performance and quality of the translation model are improved significantly by learning the language characteristics in translations by teachers and students, providing ideas for applying machine translation in professional translation teaching.


2018 ◽  
Vol 10 (11) ◽  
pp. 113 ◽  
Author(s):  
Yue Li ◽  
Xutao Wang ◽  
Pengjian Xu

Text classification is of importance in natural language processing, as the massive text information containing huge amounts of value needs to be classified into different categories for further use. In order to better classify text, our paper tries to build a deep learning model which achieves better classification results in Chinese text than those of other researchers’ models. After comparing different methods, long short-term memory (LSTM) and convolutional neural network (CNN) methods were selected as deep learning methods to classify Chinese text. LSTM is a special kind of recurrent neural network (RNN), which is capable of processing serialized information through its recurrent structure. By contrast, CNN has shown its ability to extract features from visual imagery. Therefore, two layers of LSTM and one layer of CNN were integrated to our new model: the BLSTM-C model (BLSTM stands for bi-directional long short-term memory while C stands for CNN.) LSTM was responsible for obtaining a sequence output based on past and future contexts, which was then input to the convolutional layer for extracting features. In our experiments, the proposed BLSTM-C model was evaluated in several ways. In the results, the model exhibited remarkable performance in text classification, especially in Chinese texts.


Sign in / Sign up

Export Citation Format

Share Document