scholarly journals Analysis of Terahertz Wave on Increasing Radar Cross Section of 3D Conductive Model

Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 74
Author(s):  
Hongyao Liu ◽  
Panpan Wang ◽  
Jiali Wu ◽  
Xin Yan ◽  
Yangan Zhang ◽  
...  

Enhancing the frequency band of the electromagnetic wave is regarded as an efficient way to solve the communication blackout problem. In this paper, frequency of incident wave is raised to Terahertz (THz) band and the radar cross section (RCS) of the three-dimensional conductive model is calculated and simulated based on the Runge–Kutta Exponential Time Differencing–Finite Difference Time Domain method (RKETD-FDTD). Interaction of THz wave and magnetized plasma sheath is discussed. Attenuations in incident wave frequencies of 0.34 THz and 3 GHz and different plasma densities are analyzed. The monostatic RCS is used to compare the penetration in different incident wave frequencies while the bistatic RCS is fixed on 0.34 THz to study its characteristics. The simulation result has almost the same RCS as that of the model without coating plasma when the frequency of incident wave reaches 0.34 THz. The advantages of THz wave at 0.34 THz on increasing RCS and reducing the attenuation are demonstrated from different aspects including polarizations, incident angles, magnetization and anisotropy of plasma, thickness of plasma, scan planes and inhomogeneous distribution of plasma. It can be concluded that 0.34 THz has unique advantages in increasing the radar cross section and can be applied to solve the problem of communication interruption.

2018 ◽  
Vol 17 (3) ◽  
pp. 1013-1018 ◽  
Author(s):  
Jian-Xiao Liu ◽  
Lu Ju ◽  
Ling-Hui Meng ◽  
Yu-Jie Liu ◽  
Zhi-Gang Xu ◽  
...  

2013 ◽  
Vol 3 (5) ◽  
pp. 516-521 ◽  
Author(s):  
F. Sadeghikia ◽  
F. Hodjat-Kashani

This theoretical study presents the characteristics of plasma monopole antennas in the VHF/UHF range using finite difference time domain (FDTD) simulation. Results show that more broadband characteristics can be obtained by increasing the diameter of the plasma tube and that the minor lobes diminish in intensity as diameter increases. Furthermore, the nulls are replaced by low level radiation. Since the collision frequency, which is a function of gas pressure, represents the loss mechanism of plasma, decreasing its value increases the gain and radar cross section (RCS) of the antenna. Theoretical modeling shows that at higher plasma frequencies with respect to the signal frequency, the gain and radar cross section of the plasma antenna are high enough and that the impedance curves are altered as the plasma frequency varies. Using these preliminary studies, mutual impedance and gain of a broadside array of two parallel side-by-side plasma elements is presented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ali Pesarakloo ◽  
Alireza Oruji

AbstractIn this paper using Plasmon Resonances Management (PRM), a bi-functional meta-mirror is proposed in which, the meta-mirror can obtain two opposite properties in two different frequency ranges. In this method, an anisotropic unit cell with polarization conversion property is modified to have two plasmon resonances in both symmetric and anti-symmetric planes in a specific frequency. This allows the unit cell to have the property of unchanged polarization in that frequency. The meta-mirror is composed of this modified unit cell and its mirror as a chessboard arrangement and the incident wave on the meta-mirror is reflected as in-phase in that specific frequency i.e. specular reflection, while as out-of-phase in other frequencies i.e. RCS reduction. The designed meta-mirror in this paper demonstrates the RCS reduction in two side-bands from 4 to 9 GHz and 10.8 to 14.8 GHz while behaving as a specular reflection in the frequency around 10 GHz.


Sign in / Sign up

Export Citation Format

Share Document