scholarly journals Active Contour Model Using Fast Fourier Transformation for Salient Object Detection

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 192
Author(s):  
Umer Sadiq Khan ◽  
Xingjun Zhang ◽  
Yuanqi Su

The active contour model is a comprehensive research technique used for salient object detection. Most active contour models of saliency detection are developed in the context of natural scenes, and their role with synthetic and medical images is not well investigated. Existing active contour models perform efficiently in many complexities but facing challenges on synthetic and medical images due to the limited time like, precise automatic fitted contour and expensive initialization computational cost. Our intention is detecting automatic boundary of the object without re-initialization which further in evolution drive to extract salient object. For this, we propose a simple novel derivative of a numerical solution scheme, using fast Fourier transformation (FFT) in active contour (Snake) differential equations that has two major enhancements, namely it completely avoids the approximation of expansive spatial derivatives finite differences, and the regularization scheme can be generally extended more. Second, FFT is significantly faster compared to the traditional solution in spatial domain. Finally, this model practiced Fourier-force function to fit curves naturally and extract salient objects from the background. Compared with the state-of-the-art methods, the proposed method achieves at least a 3% increase of accuracy on three diverse set of images. Moreover, it runs very fast, and the average running time of the proposed methods is about one twelfth of the baseline.

2020 ◽  
Vol 10 (11) ◽  
pp. 3845
Author(s):  
Umer Sadiq Khan ◽  
Xingjun Zhang ◽  
Yuanqi Su

The combination of active contour models (ACMs) for both contour and salient object detection is an attractive approach for researchers in image segmentation. Existing active contour models fail when improper initialization is performed. We propose a novel active contour model with salience detection in the complex domain to address this issue. First, the input image is converted to the complex domain. The complex transformation gives salience cue. In addition, it is well suited for cyclic objects and it speeds up the iteration of the active contour. During the process, we utilize a low-pass filter that lets the low spatial frequencies pass, while attenuating, or completely blocking, the high spatial frequencies to reduce the random noise connected with favorable or higher frequencies. Furthermore, the model introduces a force function in the complex domain that dynamically shrinks a contour when it is outside of the object of interest and expands it when the contour is inside the object. Comprehensive tests on both synthetic images and natural images show that our proposed algorithm produces accurate salience results that are close to the ground truth. At the same time, it eliminates re-initialization and, thus, reduces the execution time.


2015 ◽  
Vol 15 (03) ◽  
pp. 1550010
Author(s):  
Hao Liu ◽  
Hongbo Qian ◽  
Ning Dai ◽  
Jianning Zhao

It is an important segmentation approach of CT/MRI images to automatically extract contours in every slice using active contour models. The key point of the segmentation approach is to automatically construct initial contours for active contour models because any active contour model is sensitive to its initial contour. This paper presents an algorithm to construct such initial contours using a heuristic method. Assume that the contour in previous slice (previous contour) is accurate. The contour in the current slice (current contour) is constructed according to the previous contour using the way: Recognition and link of edge points of tissues according to the previous contour. The contour linking edge points is used as the initial contour of the distance regularized level set evolution (DRLSE) method and then an accurate contour can be extracted in the current slice.


2015 ◽  
Vol 27 (05) ◽  
pp. 1550047 ◽  
Author(s):  
Gaurav Sethi ◽  
B. S. Saini

Precise segmentation of abdomen diseases like tumor, cyst and stone are crucial in the design of a computer aided diagnostic system. The complexity of shapes and similarity of texture of disease with the surrounding tissues makes the segmentation of abdomen related diseases much more challenging. Thus, this paper is devoted to the segmentation of abdomen diseases using active contour models. The active contour models are formulated using the level-set method. Edge-based Distance Regularized Level Set Evolution (DRLSE) and region based Selective Binary and Gaussian Filtering Regularized Level Set (SBGFRLS) are used for segmentation of various abdomen diseases. These segmentation methods are applied on 60 CT images (20 images each of tumor, cyst and stone). Comparative analysis shows that edge-based active contour models are able to segment abdomen disease more accurately than region-based level set active contour model.


2012 ◽  
Vol 12 (03) ◽  
pp. 1250019 ◽  
Author(s):  
LIHE ZHANG ◽  
ZHENZHEN LIU

In this paper, we propose a novel cosegmentation algorithm based on active contour model which utilizes local and global image statistics. Many localized region-based active contour models have been proposed to solve a challenging problem of the property (such as intensity, color, texture, etc.) inhomogeneities that often occurs in real images, but these models usually cannot reasonably evolve the curve in this situation that some center points along the curve are in homogeneous regions and their local regions are far away from the object. In order to overcome the difficulties we selectively enlarge the driven force of some points and introduce the edge indicator function to avoid the curve over-shrinking or over-expanding on the salient boundaries. In addition, we introduce global image statistics to better the curve evolution and try to avoid the given energy functional converging to a local minimum. Practical experiments show that our algorithm can obtain better segmentation results.


2020 ◽  
Vol 7 (1) ◽  
pp. 66-74
Author(s):  
Rifki Kosasih

Abdominal aortic aneurysm (AAA) is a disease that is caused by dilation of the aortic wall. Dilation of the aortic wall will affect the size of the diameter of lumen and the aorta. In this study we use T1 and T2 images on 4 patients with AAA which generated from MR Imaging to calculate the diameter of the abdominal aortic aneurysm (AAA). To calculate the diameter of lumen and the aorta, the first step is image registration using Laplacian eigenmap method. After that we propose an automatic segmentation method on region of the aorta by using active contour models to get the contour of lumen and the aorta. The last step,  we calculate the diameter of lumen and the aorta by using contour of lumen and the aorta. In our experiment, active contour model is very good method for segmentation AAA. In the result, our proposed model give the accuracy rate of lumen is 96.41% and accuracy rate of aorta is 95.22%. 


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Yanli Zhai ◽  
Boying Wu ◽  
Dazhi Zhang ◽  
Jiebao Sun

We propose a new variational model for segmenting objects of interest from color images. This model is inspired by the geodesic active contour model, the region-scalable fitting model, the weighted bounded variation model and the active contour models based on the Mumford-Shah model. In order to segment desired objects in color images, the energy functional in our model includes a discrimination function that determines whether an image pixel belongs to the desired objects or not. Compared with other active contour models, our new model cannot only avoid the usual drawback in the level set approach but also detect the objects of interest accurately. Moreover, we investigate the new model mathematically and establish the existence of the minimum to the new energy functional. Finally, numerical results show the effectiveness of our proposed model.


Sign in / Sign up

Export Citation Format

Share Document