scholarly journals Coordinated Sending-End Power System Frequency Regulation via UHVDC

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1909
Author(s):  
Qiaoming Shi ◽  
Hongqing Liu ◽  
Kai Liu ◽  
Yongping Wang ◽  
Qingwu Zhang ◽  
...  

The continuous improvement of new energy penetration reduces the inertia of the system, which leads to the frequency deviation and the rate of change of frequency (RoCoF) being easily exceeded. To improve the frequency stability of sending-end power systems with large-scale renewable energy access via ultra-high voltage direct current (UHVDC), the coordinated frequency control for UHVDC participating in system frequency regulation (FR) including primary FR and system inertial response is presented. Based on the simplified system model, the mechanism of UHVDC participation in system frequency support and its influence on receiving-end system frequency response characteristics are analyzed. Compared with the inertia response and primary FR of traditional synchronous generators, the parameter calculating method of UHVDC coordinated frequency response control is proposed. Based on the system root trajectory analysis, the influence of the frequency response control parameters on the sending-end system’s stability is analyzed, and the constraints of UHVDC participating in the system frequency response control are analyzed. Then, based on the RTDS verification platform containing the Lingshao ±800 kV UHVDC control and protection system, the system frequency response characteristics under different control strategies, operating conditions and control parameters are verified and analyzed. The experimental results show that the UHVDC frequency coordinated control can effectively increase the equivalent inertia of the sending-end system, restrain the RoCoF and the frequency deviation, and increase the FR capability of the UHVDC system.

Author(s):  
Wang Yin-Sha ◽  
Li Wen-Yi ◽  
Li Zhi-Wen

Background: With the large-scale Doubly Fed Induction Generator (DFIG) wind turbine integrated into the power system, the DFIG inertia response of the wind turbine should be provided. Also, the frequency response should be similar to the conventional generation technologies. This paper investigated the influence of frequency response term and wind speed conditions on system frequency control. Methods: The specific operating conditions of four control strategies, including inertia control, droop control, over speed control and pitch angle control were researched in this paper. Multi-factor coordinated frequency control strategy of DFIG wind turbine was established based on the above researches. The strategy was composed of wind speed ranging from low to high. Results: According to the simulation results, the DFIG wind turbine, which was based on multifactor coordinated frequency control strategy, could respond to the system’s frequency change of power grid, effectively. Conclusion: It helps system frequency return to stable states better and faster than DFIG wind turbine and also could reduce the fluctuation of system frequency.


1992 ◽  
Vol 25 (3) ◽  
pp. 155
Author(s):  
H. Ohigashi ◽  
T. Itoh ◽  
K. Kimura ◽  
T. Nakanishi ◽  
M. Suzuki

Sign in / Sign up

Export Citation Format

Share Document