scholarly journals Light-Weight, Self-Powered Sensor Based on Triboelectric Nanogenerator for Big Data Analytics in Sports

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2322
Author(s):  
Xiaofei Ma ◽  
Xuan Liu ◽  
Xinxing Li ◽  
Yunfei Ma

With the rapid development of the Internet of Things (IoTs), big data analytics has been widely used in the sport field. In this paper, a light-weight, self-powered sensor based on a triboelectric nanogenerator for big data analytics in sports has been demonstrated. The weight of each sensing unit is ~0.4 g. The friction material consists of polyaniline (PANI) and polytetrafluoroethylene (PTFE). Based on the triboelectric nanogenerator (TENG), the device can convert small amounts of mechanical energy into the electrical signal, which contains information about the hitting position and hitting velocity of table tennis balls. By collecting data from daily table tennis training in real time, the personalized training program can be adjusted. A practical application has been exhibited for collecting table tennis information in real time and, according to these data, coaches can develop personalized training for an amateur to enhance the ability of hand control, which can improve their table tennis skills. This work opens up a new direction in intelligent athletic facilities and big data analytics.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jianjun Luo ◽  
Ziming Wang ◽  
Liang Xu ◽  
Aurelia Chi Wang ◽  
Kai Han ◽  
...  

AbstractIn the new era of internet of things, big data collection and analysis based on widely distributed intelligent sensing technology is particularly important. Here, we report a flexible and durable wood-based triboelectric nanogenerator for self-powered sensing in athletic big data analytics. Based on a simple and effective strategy, natural wood can be converted into a high-performance triboelectric material with excellent mechanical properties, such as 7.5-fold enhancement in strength, superior flexibility, wear resistance and processability. The electrical output performance is also enhanced by more than 70% compared with natural wood. A self-powered falling point distribution statistical system and an edge ball judgement system are further developed to provide training guidance and real-time competition assistance for both athletes and referees. This work can not only expand the application area of the self-powered system to smart sport monitoring and assisting, but also promote the development of big data analytics in intelligent sports industry.


Author(s):  
Amir A. Khwaja

Big data explosion has already happened and the situation is only going to exacerbate with such a high number of data sources and high-end technology prevalent everywhere, generating data at a frantic pace. One of the most important aspects of big data is being able to capture, process, and analyze data as it is happening in real-time to allow real-time business decisions. Alternate approaches must be investigated especially consisting of highly parallel and real-time computations for big data processing. The chapter presents RealSpec real-time specification language that may be used for the modeling of big data analytics due to the inherent language features needed for real-time big data processing such as concurrent processes, multi-threading, resource modeling, timing constraints, and exception handling. The chapter provides an overview of RealSpec and applies the language to a detailed big data event recognition case study to demonstrate language applicability to big data framework and analytics modeling.


Big Data ◽  
2016 ◽  
pp. 418-440
Author(s):  
Amir A. Khwaja

Big data explosion has already happened and the situation is only going to exacerbate with such a high number of data sources and high-end technology prevalent everywhere, generating data at a frantic pace. One of the most important aspects of big data is being able to capture, process, and analyze data as it is happening in real-time to allow real-time business decisions. Alternate approaches must be investigated especially consisting of highly parallel and real-time computations for big data processing. The chapter presents RealSpec real-time specification language that may be used for the modeling of big data analytics due to the inherent language features needed for real-time big data processing such as concurrent processes, multi-threading, resource modeling, timing constraints, and exception handling. The chapter provides an overview of RealSpec and applies the language to a detailed big data event recognition case study to demonstrate language applicability to big data framework and analytics modeling.


2017 ◽  
Vol 109 ◽  
pp. 180-187 ◽  
Author(s):  
Lamia Karim ◽  
Azedine Boulmakoul ◽  
Aziz Mabrouk ◽  
Ahmed Lbath

Sign in / Sign up

Export Citation Format

Share Document